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Consistent trait‑temperature 
interactions drive butterfly 
phenology in both incidental 
and survey data
Elise A. Larsen1*, Michael W. Belitz2,3, Robert P. Guralnick2 & Leslie Ries1

Data availability limits phenological research at broad temporal and spatial extents. Butterflies 
are among the few taxa with broad‑scale occurrence data, from both incidental reports and formal 
surveys. Incidental reports have biases that are challenging to address, but structured surveys are 
often limited seasonally and may not span full flight phenologies. Thus, how these data source 
compare in phenological analyses is unclear. We modeled butterfly phenology in relation to traits 
and climate using parallel analyses of incidental and survey data, to explore their shared utility and 
potential for analytical integration. One workflow aggregated “Pollard” surveys, where sites are 
visited multiple times per year; the other aggregated incidental data from online portals: iNaturalist 
and eButterfly. For 40 species, we estimated early (10%) and mid (50%) flight period metrics, 
and compared the spatiotemporal patterns and drivers of phenology across species and between 
datasets. For both datasets, inter‑annual variability was best explained by temperature, and seasonal 
emergence was earlier for resident species overwintering at more advanced stages. Other traits 
related to habitat, feeding, dispersal, and voltinism had mixed or no impacts. Our results suggest that 
data integration can improve phenological research, and leveraging traits may predict phenology in 
poorly studied species.

Shifting phenology, the timing of life history events, is a primary response of organisms to changes in their 
environment, particularly related to  climate1,2. Phenological patterns vary across space and time, often in ways 
that are predictable based on gradients in temperature and  precipitation3,4 or static cues like  photoperiod5. Yet 
not all species respond to environmental shifts in the same  way2 and so when multiple species interact, differ-
ential shifts in phenology may cause mismatches in seasonal  timing6. These mismatches may have demographic 
or even ecosystem consequences and phenological mismatches are currently a major focus of ecological and 
evolutionary research (e.g.,4,7–9).

Insect phenology has been shown to be particularly sensitive in terms of how organisms shift their timing 
to adjust to changing  environments3,10. This is because insects are ectothermic and their developmental rate is 
thus driven largely by ambient  temperature10. Because of their importance for agricultural systems, models that 
accumulate degrees within certain ranges (called growing degree day, or GDD, models) have been developed to 
predict local phenology of insects and have proven to be highly effective for both pest and non-pest  species11. 
Butterflies are an excellent group for the study of insect phenology; their biology is well-known and they are 
primary consumers, the trophic level that has been found to be the most sensitive in terms of animal  phenology4.

Studies of butterfly phenology range from detailed, mechanistic single-species studies (e.g.,12–16) to broader 
examinations of whole communities that assess consistency of responses across scales while also capturing 
species-specific variability in sensitivity (e.g.,17–25). Consistently and not surprisingly, these studies have found 
that many, but not all, butterfly species fly earlier in warmer years. Traditional timing of flight initiation (e.g., 
spring, summer, or fall flyers) has been found to be an important factor in phenological  shifts17–20,23, with earlier 
flyers showing more sensitive shifts forward and later flyers sometimes shifting later. Overwinter stage was also 
shown to be  important17,19,20,23 with the later developmental stages when overwintering (adult vs. pupa vs. larvae 
vs. egg) being associated with earlier and more sensitive flight period timing. Other traits that have been studied, 
such as hostplant breadth, mobility, and voltinism have had more mixed  results18,19,26,27.
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Phenological shifts are difficult to estimate because their detection is strongly influenced by the timing and 
structure of monitoring events. Thus, a critical component for all phenology studies is choosing an appropriate 
metric (or “yardstick”) and data set to detect change at different points along seasonal time-courses6,28. One 
metric of particular interest is onset, the first occurrence of adults each season. Yet onset is particularly difficult 
to estimate because it occurs, by definition, when population levels are at their  smallest28,29. This challenge is 
compounded by monitoring data emerging from a variety of different observation protocols, each with particular 
biases that may obscure this hard-to-detect event. Also, onset timing may not be a useful metric for representing 
population phenology, as it may be driven by extreme conditions experienced by a small minority of individuals. 
One solution is to focus on an arbitrary threshold when a certain portion of earlier-flying individuals have been 
recorded (e.g., 10% or 25%). This approach provides a metric that is easily calculable, but will vary in ecological 
meaning, depending on the dynamics of a given population, particularly in relation to voltinism. Alternatively, 
mid-season metrics, (e.g. mean or median period) are often more robust to variation in data type and  density28, 
but may be less meaningful in terms of ecological dynamics, such as mismatch.

Here, we focus on the Northeastern US butterfly community, comparing early (10%) adult flight and mid-
season timing (50%) for data generated from two types of community (“citizen”) science inventories. These 
percentile metrics of phenology are based on data throughout the flight period, such that late season dynamics 
can result in changes to early and mid-season metrics. Thus, these metrics provide a different type of information 
on phenology than onset per se. While a percentile metric of the first generation would be the most direct com-
parison across species, many butterflies have overlapping generations and existing data do not lend themselves to 
discerning among generations. Thus, we consider percentile phenometrics across a species’ entire flight period. 
The interpretation of these metrics varies according to voltinism and abundance patterns across generations. For 
populations with significant population growth across a growing season, the relative abundance of later genera-
tions will shift the metrics toward the later generation, and be less representative of the initial flight. Still, early 
season metrics represent the emergence or arrival of the first 10% of adults within a region.

Our goal is to determine how these two popular and growing monitoring resources inform adult phenology 
at broad, regional scales as a means to understand their shared utility and potential for future, analytical integra-
tion. The first type of data emerges from networks of volunteers who carry out repeated surveys on established 
transects using academic-like protocols that were designed specifically to track broad patterns in butterfly abun-
dance and  timing30. These programs typically provide high quality data, including all observed target species, 
abundances, and metrics of effort; yet, such surveys are generally limited geographically because of the effort to 
initiate them, recruit volunteers, and retain  them31. Of particular relevance to phenological studies, the timing 
of survey initiation each year will influence the ability to capture early-season  dynamics32.

A second class of community science resource is incidental observations of butterflies posted to online 
platforms such as iNaturalist or  eButterfly33,34. These platforms have few restrictions for inclusion and growth in 
participation has been phenomenal, leading to the highest spatial density of records compared to other moni-
toring programs, although their recent initiation means that the temporal scope of data is currently  limited35. 
iNaturalist.org, for example, has nearly doubled the number of records collected every year since its inception 
in 2008. By 2014, participation had been slowly growing and, by that year, 1,738 community scientists added 
19,598 butterfly observations globally. However, by 2020, 121,470 community scientists across the globe reported 
838,080 butterfly observations, a greater than 40-fold increase in observations in just 6  years36. Almost all of these 
reports include a digital photograph voucher, and a sizable proportion have at least two agreed-upon identifica-
tions by other members of the iNaturalist community. iNaturalist considers these records as “research-grade”37.

This recent, explosive growth of incidental data provides significant potential for use in phenological analysis. 
However, accounting for variable effort across time and space for these resources is a substantial  challenge38–40. 
Data without repeated site visits and where no information on effort or reports of absences (“presence-only” 
data) must account for recording bias, often by aggregating records at coarse grains (i.e. 10 km or higher) to 
achieve sufficient data density, though this also obscures local phenological  variability41. Despite the challenges, 
with sufficient data density, deriving insights about phenology from presence-only data holds  promise28,42. For 
example,  Karlsson17 obtained high density of presence-only data from Sweden’s popular community science web 
portal (https:// www. artpo rtalen. se/), and found results consistent with other analyses of European butterflies 
(e.g.,19,23,25). The evidence suggests that with sufficient data density, both occurrence records and survey data can 
provide phenological data representative of a focal population.

Given potential biases in both data collection methods (structured surveys with inconsistent start dates 
or incidental reports that are presence-only), it is not clear how each data set differentially represents species’ 
phenology. Consistency of results between data sets is one benchmark that can be used to compare the validity 
of findings of multiple sources of data. Another benchmark to consider is whether findings conform to patterns 
reported elsewhere; results that diverge substantially from typical observations should be carefully rechecked 
for unaccounted data biases and the selection of appropriate modeling  frameworks40. We present findings on 
phenological sensitivity from two sources of butterfly monitoring data. Given that developmental rates of Lepi-
doptera are directly driven by temperature, our specific a priori hypotheses are that flight phenology will advance 
where and when temperatures are warmer. Additionally, we predict that timing will be earlier and more sensitive 
for summer species that overwinter at more advanced stages (adult, pupae, larvae, then egg). We also explore 
the relationship between shifting phenology and other traits that have been found or suggested to potentially be 
important, including mobility, habitat association, hostplant breadth, and voltinism.

https://www.artportalen.se/
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Results
There were 114 possible grid cells in our study region (Fig. 1). For our 40 focal species during our 7-year study 
period (2012–2018), structured survey (“Pollard”) data were sufficient for phenological analysis of 1468 combi-
nations of species, year, and grid cell, with an average of 14 grid cells per species (range 1–22). In each species, 
year, grid cell combination, flight periods were estimated from an average of 165 surveys (range 30–420) at 16 
(range 2–41) sites, with abundances for the target species detected in 55 surveys (range 10–335). Incidental data 
were sufficient for phenological analysis of 1441 combinations of species, year, and grid cell, with an average 
of 17 grid cells per species (range 1–54) with at least 1 species in 69 of the possible 114 1-degree grid cells in 
the region (Fig. 1B). Flight periods in each grid cell-year combination were estimated from an average of 31 
observations (range 10–347).

Further analysis was limited to 33 species and 15 grid cells in years 2014–2018 with comparable phenomet-
rics. While species and grid cells included vary by year, metrics for a given species-cell-year were only included 
in analysis when metrics were available from both data sources. The vast majority of early flight period (10%) 
phenometrics occurred after the regionally identified “day 0” (Supplement 2 (S2) Fig. 1); “day 0” was defined 
as one week earlier than typical early flight period onset dates as per regional field guides (S1). Observed early 
flight dates often had a substantial lag compared to “day 0”, but this is not surprising since we were estimating a 
phenometric representing the early flight period as a comparison, as opposed to the earliest likely “onset”, against 
“day 0”. Among all species-cell-year combinations, only 1% and < 1% of estimated early season metrics occurred 
prior to “day 0” for survey and incidental data respectively. These could represent unusually early flight initiation, 
a rare colonization event from a warmer region, or even a misidentification. Overall, there was a large amount 
of variation in the lag from “day 0” to early flight period (10%) phenometrics, but without consistent bias in 
either dataset (S2 Fig. 1). Most estimates between incidental and survey data overlapped substantially and with 
the exception of only 5 out of 33 species (Vanessa cardui, Pyrgus communis, Papilio troilus, Eurytides marcellus, 
and Atalopedes campestris), incidental data did not have persistently earlier 10% day of year (DOY) estimates 
even though observational platforms have no constraints on the earliest submission dates. Note that structured 

Figure 1.  Study region with phenometric density from standardized surveys from the US butterfly 
monitoring network (A) and incidental data from iNaturalist and eButterfly (B). Phenometric density is 
described by concentric circles at one-degree grid cell centroids, where the diameter of the circle is number 
of years (1–7) and the color shade is the number of species with phenometrics for that number of years. The 
color of the inner-most ring of each circle represents the number of species with phenometrics in at least one 
year. Each successive ring outwards shows how many species had phenometrics in 2–7 years respectively. (A) 
demonstrates that butterfly survey phenometrics are currently limited geographically, but are taxonomically 
rich, while (B) shows that the incidental phenometrics are widespread but sufficient data were available for fewer 
species in many grid cells. This figure was made with the ggplot and ggmap packages in  R77.
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surveys are not required to begin until June 1 (but are certainly allowed to start earlier) for most programs within 
the network of butterfly survey  programs31.

Confidence intervals (CIs) for DOY estimates were often quite large, and this partially reflects the fact that 
phenology can vary substantially within a 1-degree grid cell. Within each cell, heterogeneity in landscape (eleva-
tion, slope, aspect, habitat, land use) and climate (temperature, precipitation) could lead to variation in flight 
period phenology. Also, CI size for estimates from survey data was inversely proportional to the number of 
surveys and directly proportional to number of sites for the survey dataset (Fig. 2, S2). For phenometrics using 
survey data, CIs were large with a mean of 45 (± 23) days, ranging from 2 to 155 for 10% DOY and a mean of 43 
(± 21.5) days, ranging from 3 to 150 days for 50%. Using incidental data, CIs were smaller, averaging 36 (± 18) 
days (range 1–138 days) for early-season and 44 (+/− 22) days with a range of 0–168 for 50% DOY. CI size was 
not related to the number of observations for early season phenometrics but for mid-season, CI size was inversely 
proportional to number of observations (Fig. 2, S2). Higher species confusability correlated with higher CI size 
for three models (S2 Table 1).

Mixed-model analyses of the influence of GDD and life-history traits were restricted to 32 species with 
complete trait data and 273 combinations of species flight periods for which phenometrics were estimable from 
both datasets. These flight periods fell within 15 grid cells and five years; while different grid cells were used for 
different species and in different years, each cell-year-species combination was only included in analysis if phe-
nometrics were estimated from both survey and incidental data. Overall, early flight timing differed substantially 
by overwinter status (S2 Fig. 2). The best models for both the early (10%) and mid-season (50%) phenometrics 
included overwinter status for both survey and incidental data sets (Table 1). However, GDD was only retained 
for early season metrics (Fig. 3). There were no interactions between overwinter stage and GDD in any model. 

Figure 2.  Survey (A) and incidental (B) data are compiled across day of year (DOY) for each species-year-grid 
cell unit to estimate a phenogram for the flight period, shown here for Speyeria cybele. In both panels, the black 
curve shows the flight phenograms calculated using appropriate analytical techniques: GAMs for survey data 
integrating phenological patterns across sites (A) and quantiles for incidental data aggregated across the grid 
cell (B). Our primary response variable for each analysis is the DOYs when 10% (dotted) and 50% (dashed) of 
butterflies have been counted, shown here with 95% confidence intervals [for 10% DOY estimate in yellow, 50% 
in blue]. The histogram in each panel shows underlying data: in (A) the number of surveys per week, where dark 
fill represents surveys which recorded the target species and in (B), the number of occurrence records per week.

Table 1.  Parameter estimates from the best 10% emergence models.

Best model using survey data
Best model using incidental 
data

Parameter Estimate SE p value Estimate SE p value

log(GDD) − 32.5 11.1 3.82 E−03 − 42.2 10.7 1.06 E−04

Adult diapause (0/1) 353.7 73.6 2.60 E−06 390.3 69.7 5.43 E−08

Pupal diapause (0/1) 382.1 74.3 5.34 E−07 427.6 70.5 4.63 E−09

Larval diapause (0/1) 398.8 73.8 1.46 E−07 442.2 70 1.14 E−09

Migrant (0/1) 431.9 74.6 2.01 E−08 469.8 70.8 1.88 E−10

Locally common (0/1) − 23.8 9.4 1.48 E−02 NA NA NA

Marginal  R2 0.43 0.42

Conditional  R2 0.5 0.53
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Host-plant specificity and local commonness were each included in a best-fit model but were not consistent 
between survey types. More common species showed earlier phenology metrics, but only in survey data; spe-
cies with broader host plant breadth had later mid-season phenometrics, but only in incidental data (S2). These 
parameters were not as influential as GDD and overwinter stage. Other traits, including canopy associations, 
females laying eggs in clusters, voltinism, wing size, and mobility did not emerge as significant factors in any of 
the best-fit models.

Species identity also contributed to the variability explained by the model (Table 1, S2 Table 1). The best fit 
models included a random intercept by species identity, but no random species slope for GDD or random inter-
cepts for detectability and confusability. Adding species identity added little explanatory power to early flight 
period models from either survey or incidental data. The model of early-season phenometrics (Table1) have 
marginal (fixed-effect only)  R2 values of 0.43 for survey data and 0.42 for incidental data. Adding species identity 
increases the conditional (full-model)  R2 only slightly, to 0.50 and 0.53 respectively. For mid-season analyses 
(S2); the marginal  R2 is 0.40 for survey data and 0.37 for incidental data; adding species identity increases the 
conditional  R2 more in these models, to 0.57 and 0.60 respectively.

Discussion
Phenological patterns were remarkably similar between survey and incidental datasets, with both showing pre-
dicted patterns that align with what has generally been found for butterflies: emergence was earlier for species 
that overwinter at later developmental stages and when temperature is warmer (Fig. 3A,B). Because we could 
not a priori identify which of our datasets (survey or incidental) should be considered more reliable, our goal 

Figure 3.  Model predictions for expected day-of-year (DOY) of early-season (10%) and mid-season (50%) 
phenology across species based on temperature (GDD) and overwinter strategy (by color: migrant species, and 
resident species overwintering as adults, pupae, larvae). Linear effect of log(GDD) shown on GDD axis. Model 
parameter estimates are in Table 1.
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was to determine how closely the parameter estimates aligned with each other and with our a priori hypotheses. 
Fortunately, these two sources of data aligned with the expected patterns and each other. Our results present 
powerful confirmation for the ability of both types of data to provide robust information on phenological pat-
terns, given sufficient data density and appropriate analytical frameworks. These results now provide a rationale 
for efforts to integrate both data types within a unified analysis (e.g.,43), which should be a goal of future meth-
odological developments.

The reliability of phenological patterns generated from structured butterfly survey protocols are well vetted 
in other regions, particularly the  UK19,23. Yet data from similar North American butterfly monitoring networks 
(BMNs) have not received the same level of attention. These programs generally start later and have fewer visits 
per season, so it was not clear whether shifts in early-season patterns would be detected in our study region. To 
date, only data from the Ohio Butterfly Monitoring Network have been used due to its inclusion of earlier years 
and its frequent  visits31; previous results were generally consistent with earlier flight initiation during warmer 
 years21, although delays were noted when warmer years interacted with urban heat  islands20.

Unlike survey datasets, the ability of incidental data to inform early season phenology is much less tested and 
more controversial because of the challenge of accounting for biases when effort is  unknown28,40. When appro-
priate filtering and presence-only methods are used to generate phenometrics from incidental data, results have 
often been consistent with expectations, including from  Sweden17, North  America18, and  France42. Other studies 
using incidental data have failed to find consistent patterns when compared to  surveys44,45, but these relied on 
museum specimens, which are generally sparser and frequently more biased with regard to flight period phenol-
ogy than community-science generated incidental  records46. Inconsistent or counter-intuitive results may also 
have resulted from poorly vetted data or inappropriate  analyses40. Ultimately, assessing the utility of incidental 
data in insect phenology has been difficult because of the lack of best practices for addressing biases and using 
the most appropriate metrics (but  see28,42). Analysis of percentile metrics require a different perspective for 
interpretation than an “onset” metric, as well. While interpretation of a percentile metric is straightforward for 
univoltine species, it can be more difficult for bivoltine and multivoltine species, particularly those whose abun-
dances vary across generations, as is common in butterflies. For example, a 50% metric for a bivoltine population 
may occur on a date between generations, when no butterflies are flying. Because percentile metrics are affected 
by the dynamics across the entire season, changes to early season metrics could be due to varying abundances 
late in the flight period, or flight period length, rather than changes in the early flight period.

Beyond the methodological comparison, our results provide strong evidence supporting the key role of tem-
perature and life history traits as controls on butterfly phenology. Overwinter strategy combined with GDD was 
sufficient to capture much of the variability surrounding early-season (10%) timing (Fig. 3). Seasonal emergence 
is earlier for resident species that overwinter at more advanced stages, which aligns with developmental time 
requirements following winter diapause. Also, species that overwinter in other areas and migrate to the region 
tend to arrive after resident species have initiated flights. Surprisingly, species identity and other traits such as 
mobility added very little predictive power, which suggests that for holometabolous insects, spring phenology 
may be predictable based on information that is often known: overwinter stage of the target species and local 
temperature profiles. Thus, even for species whose biology is not as well known, such as non-butterfly moths, 
flies, and beetles, emergence and arrival patterns may be predictable if overwintering stage is known. Although 
natural history information is often lacking for these groups, this still opens the door for substantial expan-
sion of phenological studies across different taxa, an important goal in an age of insect  declines47. These results 
amplify recent work that examined phenology across multiple insect orders (Coleoptera, Diptera, Hemiptera, 
Hymenoptera, Lepidoptera, and Odonata) which also found that overwinter stage was a strong and important 
predictor for initiation, termination, and duration of adult insect  activity48.

We included the confusability and commonness covariates in our models to examine if these species traits 
would differentially bias phenometrics based on survey and incidental data. Only in the survey dataset did com-
mon species have advanced early-season phenometrics. Common species may have advanced phenometrics 
because observers are more likely to catch the beginning of phenological events in species with higher relative 
abundance. Survey data may accentuate this bias because the collection method is focused on gathering abun-
dance data and due to pervasive false negatives in monitoring data differentially affecting less common  species49. 
Conversely, recorders of incidental data may put more effort into adding new species to their yearly observation 
list. While survey locations often target a variety of specific habitats used by butterflies, incidental data records 
are disproportionately in places with greater human activity; these approaches may each bias taxonomic coverage 
in different ways. Continued examination of the influences of imperfect detection, relative abundance, and their 
potential interactions on estimating phenology using community science data is warranted.

While we were able to derive clear drivers of phenological variability, estimates from both datasets varied 
widely and confidence intervals were often large. Increasing effort measured either via number of surveys or 
observers is critical for determining phenology with precision. Researchers need to thoughtfully consider data 
density thresholds needed to determine phenology at a precision appropriate for their questions. To develop 
robust estimates of phenology, data density must be sufficient across the environmental gradients of  interest40. 
Spatial aggregation is common and frequently necessary in macroecological studies; however, the relationship 
between number of survey sites and size of confidence intervals in survey data phenometrics makes clear that 
such aggregation can hide important local scale variation. Spatial scale can influence early and late season 
 phenometrics50, and aggregation must be considered with respect to the ecological questions and the grain of 
environmental drivers being considered. Given the coarse spatial aggregation of this study (~ 110 km × 85 km 
cells), it is not surprising that the confidence intervals on phenometrics are frequently large.

This study highlights both the value and important limitations of these datasets. The lack of restrictions in 
incidental data collection can lead to broad spatial and taxonomic coverage and with sufficient data density, can 
capture important signals in phenology for many species. Survey methods have more limited spatial coverage 
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but provide a structure and consistency that is itself valuable, tracking individual populations across  time51,52. 
Additionally, survey data currently have greater temporal depth since widespread collection of incidental data 
is a relatively new activity that has expanded with mobile app development. Each dataset contains biases related 
to taxonomy, location, and weather, which may impact their value for certain research questions according to 
how these biases relate to the factors or gradients of interest.

The similarity of the spatiotemporal patterns in phenology generated by these two data sources suggests there 
is potential in integrating across data types to model phenology. Data integration techniques can expand not only 
the scale and scope of  analyses53, but can also improve the accuracy and precision of  estimates43,54. Methods that 
integrate multiple data sources into single modeling frameworks have increased over recent years, particularly 
for species distribution  modeling55 and population  models43. Specific methods to integrate phenological data 
are underdeveloped but the data are increasingly available. Development of phenology-centered data integra-
tion approaches will expand our ability to understand phenological patterns, as well as the drivers and potential 
consequences of these patterns.

Accurate and precise phenological metrics of butterflies are of urgent concern given reports of broad butterfly 
 declines56–58 and recent results suggesting phenological shifts are associated with overall abundance  trends26,59. 
Warmer temperatures are also leading to additional generations in certain multivoltine butterfly species, which 
may lead to unexpected shifts in median phenology, as well as affecting demographic  outcomes60. While the focus 
here has been on early season and median timing across broad spatial and taxonomic scales, enhanced ability to 
capture number of broods over a season using incidental reporting or, better yet, integrated with structured sur-
vey data, may be possible but require new analytical approaches. Such new methods that leverage combined data 
sources hold enormous promise in expanding our capacity to not only understand drivers of spatial and temporal 
changes in phenology, but also better predict divergent future dynamics in the face of accelerating global change.

Materials and methods
We examined phenological patterns in a region of the northeastern US bounded by 36 N and 42 N latitude, 
and 94 W and 76 W longitude (Fig. 1). Comparisons were between two community science datasets: (1) survey 
data from structured monitoring networks whose members conduct regular, repeated visits to monitoring sites 
using similar (“Pollard”) protocols, and (2) incidental data from iNaturalist and eButterfly. Forty butterfly species 
were selected by data density thresholds (described below) in one or both datasets. Species were identified by 
overwinter strategy, as either migrant or resident. Residents were further identified by overwinter life stage and 
information about other traits were compiled from published  sources61–69 and used as covariates in our analyses 
(see Supplement 1 (S1) for focal trait descriptions, data by species, and sources). We include observations over 
the years 2012–2018, spatially aggregating data using 1-degree grid cells, which correspond to 111 km latitude, 
and 83–90 km longitude (Fig. 1).

Annual phenological metrics were estimated for early (10%) and mid (50%) flight periods for each dataset 
separately (Fig. 2). Note that data density thresholds meant that most species retained for analysis were sum-
mer rather than predominantly spring or fall flyers (S1). Structured surveys came from the following butterfly 
monitoring networks (BMNs): Illinois, Ohio, Iowa, Michigan, Missouri, Occoquan Bay (Northern VA). Survey 
seasons are not required to start until June for most programs but may start  earlier31. The Ohio program more 
typically begins surveys in May and the Occoquan program operates year-round (they also survey birds). While 
each program has the ability to customize methods, training, and survey intensity, the similar data structures 
allow for integration of data across programs to produce a unified, regional analysis  (following32). Survey data 
were extracted for grid cell and year combinations with at least 10 surveys completed each year across 3 or more 
sites and the number of species analyzable in each grid is shown in Fig. 1A.

Species-specific butterfly flight periods were estimated with regional generalized additive models (GAMs) 
within grid cells using the rbms package in  R32,70. This GAM approach assumes that a species’ phenology is 
synchronized within a grid cell, but allows local abundance to vary across sites. Integrating the area under the 
phenology curve estimates relative abundance across time in “butterfly days”32. For each species, year, and grid 
cell in this study, we compiled data across sites and extracted the day of year (DOY) on which the area under the 
GAM curve reached 10% and 50% of the total area (Fig. 2A). We calculated 95% confidence intervals for each 
DOY phenological estimate (colored bands in Fig. 2A) by bootstrapping, resampling individual surveys (unique 
site and date) using the GAM model and the boot package in R. To avoid biased metrics for species present prior 
to local start dates for structured surveys, we estimated phenometrics for species present in at least four surveys 
across all sites, and not detected in the first survey of the year for at least one site at which the focal species was 
subsequently observed in the given year.

Incidental occurrence data were provided by community science volunteers submitting to iNaturalist and 
eButterfly. For iNaturalist records, we downloaded research grade  observations71. To be considered research 
grade, observations must be georeferenced, include photos, have a date, not be recorded as cultivated, and at 
least two users must agree on taxon  identity36. While species identifications are always prone to some level of 
error, many experts are active on the platform, and the quality of identifications is often high, especially for the 
common North American species examined here. As a check of data accuracy, we examined 9,974 images labeled 
as Danaus plexippus (monarch butterfly) that were scored as part of this project for identification accuracy and 
found that only two images were incorrectly identified. These images were for Limenitis archippus (the viceroy 
butterfly), a mimic of monarchs with a very similar appearance. For all research grade iNaturalist butterfly records 
in our species list, we also reviewed each image linked to the iNaturalist dataset to confirm that only adults were 
used in our analysis. We then combined iNaturalist incidental records with those from eButterfly. eButterfly is 
a community science platform that allows users to upload either single observations of butterflies or counts of 
every butterfly species seen during an observation outing (Prudic et al. 2017). eButterfly also encourages users to 
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list the number of observers, time spent observing, and distance traveled, which can be used to quantify survey 
effort. However, most submissions do not include these, so we treated all eButterfly data as incidental. eBut-
terfly performs quality control on observations by verifying that observations occur within their known ranges.

A final, combined dataset of incidental records from iNaturalist and eButterfly was produced and data density 
calculated for each grid cell (Fig. 1B). Observations across platforms were deemed duplicates if records were of 
the same species and had the same date, longitude, and latitude values, and only one record was retained. Phe-
nometrics were calculated for incidental data using quantiles (Fig. 2B), where abundances divided across flight 
periods are put into equal bins. Given the likelihood of long flight periods with multiple generations for some of 
our species, quantiles are the least biased method for estimating both early and mid-flight period  phenology28. 
Phenometrics were estimated for species, year, and grid cell combinations with at least 10 occurrence records, 
which based on simulations provide usable  estimates28. We estimated the day of year (DOY) of the 10% and 
50% quantiles for the combined incidental dataset. We calculated 95% confidence intervals for each DOY phe-
nological estimate by bootstrapping the quantile estimates with different combinations of occurrence records 
(colored bands in Fig. 2B).

We identified species-cell-year combinations where phenometrics were estimable from both survey and 
incidental datasets. By filtering phenometrics to this subset, we were able to submit derived phenometrics from 
both survey and incidental datasets as response variables in identical GLMM analyses; we then compared the 
resultant patterns in relation to species traits and climate. However, we first produced a common-sense analysis 
to check for consistency among each dataset and known phenology from field guides. We calculated the dif-
ferences between the early season (10%) metric and a timepoint we designated as “day 0” for each species-grid 
cell combination. Specifically, “day 0” was estimated to be one week prior to typical flight initiation times for 
each species in each region, as estimated from regional field guides (S1;61–69). We also tested for systematic bias, 
examined overlaps of 95% confidence intervals, and determined whether the size of those intervals is affected 
by sampling intensity metrics as well as species traits.

We examined spatio-temporal patterns in phenology for each dataset using a mixed effects linear model 
with 10% and 50% DOY as the response variables (Fig. 2). For both models, we used accumulated GDD and life 
history traits (Table 1) as explanatory, fixed variables and factors related to observation (detectability and confus-
ability) and species identity as explanatory random variables. We accumulated GDD from January 1 to June 30 
for each cell-year combination to provide an index of the relative amount of energy available for growth spatially 
across grid cells and temporally across years. Daily mean temperature values were extracted at 1 km resolution 
from the Daymet climate data  product72 and averaged across focal one-degree grid cells for analysis. GDD were 
calculated from those mean values as a single-sine approximation accumulating degrees within the commonly-
used generic thresholds of 10 °C and 30 °C as base temperature and maximum temperature,  respectively73. All 
analyses were conducted using R version 4.0.274. Model selection was conducted using AIC in package  lmerTest75, 
and pseudo-R2 values (both marginal and conditional) were estimated using the MuMIn package,  following76.

Data availability
Data sets and R code utilized for this research are as follows: (1) Daymet data: https:// doi. org/ 10. 3334/ ORNLD 
AAC/ 1328. (2) GBIF Occurrence download: https:// doi. org/ 10. 15468/ dl. 1erh15. (3) Life history data: in Supple-
mental files and github repo. (4) Combined occurrence & BMN survey phenometrics dataset: github repository 
release archived at https:// doi. org/ 10. 5281/ zenodo. 69461 42. (5) All R code files are also available at https:// doi. 
org/ 10. 5281/ zenodo. 69461 42. There is minimal novel code.
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