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Abstract
1. Historical museum records provide potentially useful data for identifying drivers 

of change in species occupancy. However, because museum records are typi-
cally obtained via many collection methods, methodological developments are 
needed to enable robust inferences. Occupancy– detection models, a relatively 
new and powerful suite of statistical methods, are a potentially promising av-
enue because they can account for changes in collection effort through space 
and time.

2. We use simulated datasets to identify how and when patterns in data and/or 
modelling decisions can bias inference. We focus primarily on the consequences 
of contrasting methodological approaches for dealing with species' ranges and 
inferring species' non- detections in both space and time.

3. We find that not all datasets are suitable for occupancy– detection analysis but, 
under the right conditions (namely, datasets that are broken into more time peri-
ods for occupancy inference and that contain a high fraction of community- wide 
collections, or collection events that focus on communities of organisms), mod-
els can accurately estimate trends. Finally, we present a case study on eastern 
North American odonates where we calculate long- term trends of occupancy 
using our most robust workflow.

4. These results indicate that occupancy– detection models are a suitable frame-
work for some research cases and expand the suite of available tools for macro-
ecological analysis available to researchers, especially where structured datasets 
are unavailable.

K E Y W O R D S
global change, hierarchical model, museum specimens, occupancy- detection models

1  |  INTRODUC TION

Global change processes are contributing to the rapid restructuring 
of biodiversity across the planet (Araújo & Rahbek, 2006; Bellard 
et al., 2012). At the same time, data regarding species occurrence 

are becoming more widely available through the digitization of mu-
seum collections (Hedrick et al., 2020) and citizen science platforms 
(Dickinson et al., 2012). At the time of writing, two large databases 
of species occurrences, the Global Biodiversity Information Facility 
(GBIF) and Integrated Digitized Biocollections (iDigBio), contain over 
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2 billion records of species occurrences across the planet (both mu-
seum specimens and human observations, although we focus on the 
former here). These records may be rich in detailed information in-
cluding date of collection, location, taxonomic determinations and 
collector names. The records are often our only available information 
about the historical presence of species. However, because these 
museum data are aggregated records from many different collec-
tors and time periods, their collections usually stem from a variety 
of sampling designs which, for the most part, are not usually known. 
Consequently, they can contain numerous spatiotemporal and taxo-
nomic biases (Isaac et al., 2014). For example, sampling of opportu-
nistic (henceforth, ‘unstructured’) data is often uneven in space and 
time and may be spatially concentrated around regions of high human 
population densities (Daru et al., 2018; Mair & Ruete, 2016; Shirey 
et al., 2021; Tiago et al., 2017). Additionally, charismatic taxa are often 
oversampled with respect to the diversity of their respective clades, 
leading to occurrence shortfalls, or fewer than expected occurrences 
given the diversity of a particular clade, such as in hyperdiverse 
groups like arthropods (Callaghan et al., 2021; Troudet et al., 2017). 
In some groups, such as North American butterflies, undersampling is 
prolific in regions that are forecasted to experience the most dramatic 
changes in climate (Shirey et al., 2021). Given these biases, improper 
treatment of unstructured data can lead to misleading inferences 
(Guzman et al., 2021; Larsen & Shirey, 2021). Thus, it is imperative 
that we develop statistical frameworks for analysing unstructured 
data to afford researchers the ability to test hypotheses related to 
how global change is impacting species over long time- periods and 
large spatial extents. Here, we examine how attributes of unstruc-
tured datasets including site visitation history and collector sampling 
behaviour may impact model accuracy through simulation.

Species observation is rarely perfect so, even when a given spe-
cies is present at a site, an observer may fail to detect it during any 
given survey (e.g. animals with cryptic phenotype or behaviour may 
be difficult to see). Occupancy– detection models are a powerful 
statistical framework for disentangling these imperfect processes 
of observation from actual species' occurrence or ‘occupancy’ 
(MacKenzie et al., 2003) and these models have been widely used 
for species' distribution modelling in ecology (Kéry & Schaub, 2011). 
Occupancy models have been extended to model entire communi-
ties (‘multi- species occupancy models’) and to model one or more 
species across multiple seasons (‘dynamic occupancy models’) (Kéry 
& Schaub, 2011). These models have improved our ability to explore 
spatial and temporal patterns of biodiversity and aided in identifica-
tion of drivers of global change (Kéry & Royle, 2020).

Occupancy models are potentially well- suited to handle the 
inherent biases in species observations present in unstructured 
data (Erickson & Smith, 2021). A major challenge when doing so 
is accounting for the fact that records of when and where histori-
cal collectors sampled are rarely available. Collections that did not 
yield specimens, or did but the specimens were never archived 
in a museum, are typically unreported because no physical speci-
mens exist in the museum collection. This shortcoming is further 
exacerbated by variable (and also unknown) individual collector 

behaviours. For example, some collectors focus on particular taxo-
nomic groups, while others collect entire communities (de Siracusa 
et al., 2020; Di Cecco et al., 2021). Species' traits may also influ-
ence the probability of detection or ‘allure’ and, thus, collection 
outcomes (Johnston et al., 2014). In all, physical specimens and 
their metadata represent a fragmented history of potential col-
lection events that researchers must carefully piece together to 
reconstruct historical patterns.

Researchers have developed some best practices for overcom-
ing some of these challenges for presence- only data. For instance, it 
might be appropriate to infer non- detections of one (or more) spe-
cies at a given site based on known detections of other species at 
that same site (Kamp et al., 2016; Kéry, 2010; van Strien et al., 2013). 
Constraining detection/non- detection records only to those sites 
that are plausibly within the range of a species' geographical distri-
bution has also been shown to improve model performance (Guzman 
et al., 2021). Combined, these steps not only improve estimates of 
occupancy and detection, but can also reduce the computational 
size of analyses. However, we lack clear guidelines that highlight 
best practices for avoiding the potential biases introduced by vari-
able observer behaviour, temporal trends in visitation, and species 
distributions and traits.

Here, we use a simulation framework to explore the performance 
of occupancy– detection models when applied to data that contain 
many of the patterns likely present in natural history collection data. 
Specifically, we explore how changes in species' occupancy, species' 
detection and collector visit frequency impact model performance 
for datasets containing presence- only records across a community 
of species, each with its own geographical range. We consider the 
consequences of (a) incorporating estimated species' ranges and (b) 
inferring non- detections of some species from recorded detections of 
others on estimated trends in occupancy and detection, for different 
collector behaviours. We synthesize our findings by providing guide-
lines for steps that could be taken to reduce bias when applying similar 
occupancy– detection models to empirical datasets. Finally, we apply 
our scenarios to a real- world dataset containing detection records for 
eastern North American odonates (dragonflies and damselflies).

2  |  MATERIAL S AND METHODS

2.1  |  Data simulation

We simulate a community of N species, each inhabiting some or all of J 
potential sites over K time periods, which we call ‘occupancy intervals 
(OI)’. In application, occupancy intervals could correspond to single years 
or could span multiple years. We suppose that each occupancy interval is 
further broken into I visit intervals (VI), during which collectors may visit 
sites to sample some or all of the species present (commonly used terms 
in this manuscript are presented in the glossary of terms, Box 1).

Because species often differ in their spatial extent, in some of 
our scenarios, we simulate a unique ‘geographical’ range for each 
species. Specifically, we assume that species i  potentially occupies 
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sites R
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}

, where r
[

i
]

∈ {1, 2, … , J} denotes the 
total number of sites within the range of species i and we refer to R

[

i
]

 
as the ‘range’ of species i . To simulate each species range, we gen-
erated polygons by drawing a convex hull around a series of random 
vertices on a defined grid a[i], where:

For site j within the range of species i , we simulate occupancy 
in an occupancy interval k by drawing from a Bernoulli distribution 
with success probability �
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Here �0 denotes the baseline occupancy (on the linear scale), 
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 is a random species- specific intercept and �OI
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 is a random 
species- specific effect of occupancy interval (a positive value 
of �OI
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 would indicate that species i  is increasing in occupancy 
through time). We assume that �sp

[

i
]

 and �OI

[

i
]

 are normally dis-
tributed, such that:

Here, �
� ,sp denotes the interspecific variability in occupancy, �

� ,OI de-
notes the mean effect of occupancy interval on species occupancy and 
�
� ,OI denotes the variability in species' temporal occupancy trends.

Because sampling effort can change through time, we assume 
that the probability that a site is visited in a visit interval can change 
through time (i.e. across occupancy intervals). Furthermore, because 
some collectors may record all species that they detect, while others 
may record only a single species, all site visits are not equivalent. If a 
collector records all species (we call this ‘community sampling’), then 
a visit to a site in a given visit interval is a relevant visit for all species. 
However, if a collector only records a single species, ignoring others 
(we call this ‘targeted sampling’), then a visit to a site in a given visit 
interval is only a meaningful visit for the recorded species. In our data 
simulation, we suppose that, in occupancy interval k, site j receives a 
‘community sampling’ visit in each visit interval with probability

and when such a visit occurs, each species is recorded as either detected 
or not detected. Here, �0 denotes the baseline probability of a commu-
nity sampling visit (on the linear scale) and �OI is the effect of occupancy 
interval on visitation probability. This latter term allows the probability 
of site visitation to change systematically through time (i.e. across occu-
pancy intervals). �com lets us tune the fraction of community sampling 
visits relative to targeted sampling events; if �com = 1, all visits are com-
munity sampling events, whereas, if �com = 0, all sampling events are 
targeted sampling events. By parameterizing �com as a function of model 
parameters, one could also allow collector behaviour to change across 
space or through time, however, that is beyond our scope here.

Only visit intervals (at each site) that do not receive a commu-
nity sampling visit can be subjected to targeted sampling visits (a 
targeted sampling visit will not add any additional information if a 
community sampling visit also occurs in the same visit interval, so 
can be ignored). Targeted sampling visits are, by their nature, species 
specific. The probability that, in occupancy interval k, site j receives 
a targeted sampling visit for species i  is given by

where �0
[

i
]

 denotes the baseline probability of a targeted sampling 
visit searching for species i  (on the linear scale) and �OI

[

i
]

 denotes the 
effect of occupancy interval on the probability of targeted sampling 
visits searching for species i . We assume that both �sp

[

i
]

 and �OI

[

i
]

 are 
normally distributed, such that

where �
�,0 denotes the mean probability, across species, of a targeted 

sampling visit (in the first occupancy interval), �
�,OI denotes the mean 
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BOX 1 Glossary of terms commonly used 
throughout this manuscript

Glossary of terms
Occupancy interval: Period of time in which occupancy is 
estimated. Also referred to as closure period.
Visit interval: Units of time in which occupancy intervals 
are further divided and in which potential site visits might 
occur.
Visit: A species' observation at a site × time interval combi-
nation takes place when a collector searching for that spe-
cies visits that sites in that time interval (visit interval). A 
visit can be inferred to have occurred if at least one species 
record from a site × time interval combination exists.
Site: We partition space into a spatial grid of sites, in which 
visits can then be inferred to have occurred.
Species' range: For a given species, the collection of sites 
where that species could plausibly be found.
Community sampling: A sampling event where a collector 
samples the entire community of species. Under this type 
of sampling, one can infer non- detections of species not 
found from detections of species that are found.
Targeted sampling: A sampling event where a collector pri-
marily seeks a single species. Under this type of sampling, 
records of recorded species do not provide information 
on the absence of non- recorded species. Targeted and 
community sampling events are two ends of a continuous 
spectrum. We do not consider intermediate combinations 
of these strategies here.



4  |   Methods in Ecology and Evoluon SHIREY et al.

effect, also across species, of occupancy interval on the probability of 
targeted sampling visits, and �

�,sp and �
�,OI denote the interspecific vari-

ation in visitation probability and variation in temporal change in visita-
tion, respectively. In our simulations, we set �0 = �

�,0 and �OI = �
�,OI so 

that both the probability of community and targeted sampling events 
increase or decrease simultaneously, but this does not need to be 
the case. For example, the probability of community sampling events 
could increase through time while the probability of targeted sampling 
events might decrease. Exploring such a scenario would likely be inter-
esting, but is beyond the scope of our paper here. Because �OI is equal 
to �

�,OI, we indicate values used for both parameters by only providing 
the latter (therefore �OI) will simply be labelled as �

�,OI.
Finally, for each species, we simulate detection during the visit 

intervals where visits occurred. For site j ∈ R
[

i
]

, we draw species' i  
detections across the visits that occurred and could have detected 
that species (e.g. community sampling visits or targeting sampling 
visits aimed at species i ) in occupancy interval k from a Bernoulli 
distribution with probability p

[

i, j, k
]

 where

where p0 is the baseline detection probability (on the linear scale), psp
[

i
]

 
is a random species- specific intercept, psite

[

j, k
]

 is a random site- specific 
intercept that varies by occupancy interval and pOI is an overall effect 
of occupancy interval. psite

[

j, k
]

 allows spatiotemporal variability in de-
tection probability (changing across sites and occupancy intervals), and 
helps account for the variation that is inherent in sample effort across 
space and time in unstructured historical datasets. pOI allows detec-
tion to change systematically through time, as has likely occurred in 
many groups as sampling techniques have improved, for example. We 
assume that both psp and psite are normally distributed, such that:

where �p,sp denotes the interspecific variation in detection and �p,site 
the spatiotemporal (site and occupancy interval) variation in detection.

We simulate our data under a scenario comprising 10 occupancy 
intervals and 3 visit intervals and then we further consider (a) five 
different fractions of community sampling events (�com), (b) three 
different trends in visitation probability (�

�,OI; increasing, decreasing 
and stable) and (c) identical versus variable species ranges for a total 
of 270 simulation scenarios (specific parameter values are shown in 
Table S1 and Figure 1). We conducted all data simulations in R (code 
is available at https://github.com/lmguz man/occ_histo rical).

2.2  |  Occupancy– detection models

We built an occupancy model that reflects the structure of the simu-
lated datasets (i.e. modelling occupancy and detection probability). 
We do not incorporate data about site visitation history or community 
sampling information into our analyses, as this information is typically 

difficult or impossible to obtain for historical datasets. How we infer 
site visitation history, which is part of our data filtering (rather than 
statistical model), is described below. We provide a detailed descrip-
tion of our occupancy models in Supporting Information.

Using our simulated datasets, we contrast the performance of six 
different data processing workflows one might follow when apply-
ing an occupancy model to a historical dataset. We provide an over-
view of these below and they are also shown graphically in Figure 2.

• WFall,all: we model all sites for all species across all visit intervals, 
even when some of those visit intervals do not contain any known 
species detections.

• WFall,detected: we model all sites for all species, but each site is 
only modelled over the visit intervals where at least one species was 
detected. Here, we infer non- detections of non- observed species 
when at least one other species was detected at a site in a given 
visit. This is a fair assumption when most collectors sample the en-
tire community (�com near 1), but not when they mostly target indi-
vidual species (�com near 0).

• WFall,visits: we model all sites for all species, but each site only 
over the visit intervals where we know visits occurred (i.e. we model 
the true site visitation history which we are only able to do because 
we are working with simulated data). This case provides a bench-
mark for a ‘best information’ workflow.

• WFrange,all: we model each species over only the sites that fall 
within its inferred range and across all visit intervals (i.e. an analogue 
to WFall,all above, but where species' ranges are estimated and then 
incorporated).

(7)p
[

i, j, k
]

= expit
[

p0 + psp
[

i
]

+ psite
[

j, k
]

+ pOI × k
]

,

(8)
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i
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:
(

0, �p,sp
)

psite
[

j, k
]

:
(

0, �p,site
)

,

F I G U R E  1  Schematic depicting data simulation decisions. 
Visit, occupancy and detection probabilities all have three levels: 
Decreasing, stable and increasing with time (−0.1, 0, 0.1). The 
probability that visits are community sampling events is: 0, 0.25, 
0.50, 0.75 and 1. All five parameters were varied sequentially, 
which resulted in 270 multi- species detection– non- detection 
combinations (2 × 3 × 3 × 3 × 5)

Decreasing Stable Increasing

Decreasing Stable Increasing

Decreasing Stable Increasing

0 0.25 0.5 57.0 1

Species Simulated
without Ranges

Species Simulated
with Ranges

SIMULATION SPECIFICATIONS

Site visitation 

Species 
Range

Occupancy

Detection

Community
Sampling

https://github.com/lmguzman/occ_historical
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• WFrange,detected: we model each species over only the sites that 
fall within its inferred range and, for each of those sites, only over 
visit intervals where at least one species was detected (this is an an-
alogue to WFall,detected above, but where species' ranges are estimated 
and then incorporated).

• WFrange,visits: we model each species over only the sites that 
fall within its inferred range, but each site only over the visit 
intervals where we know visits occurred (this is an analogue to 
WFall,visits above, but where species' ranges are estimated and then 
incorporated).

In addition to these data processing workflows, we evaluated 
the effect of binning our data into different numbers of occupancy 
intervals. We simulated all datasets assuming 10 occupancy inter-
vals and 3 visit intervals (so that the total amount of ‘raw data’ is 
always the same) and then, to investigate the impact of occupancy 
interval number, we re- binned the data to construct datasets con-
taining K = 2, K = 5 and K = 10 occupancy intervals (always using 
I = 3 visit intervals). Note that visit intervals are ‘longer’ when 
we use fewer occupancy intervals for the same total amount of 
data (e.g. for a 12- year empirical dataset, we could bin data into  

6 occupancy intervals, each comprising 2 one- year visit intervals 
or, alternatively, into 3 occupancy intervals, each comprising 2 
two- year visit intervals). We compared different data processing 
workflows by assessing accuracy of model- estimated parameter 
values against their true values using root mean squared error 
(RMSE) across 10 replicates.

2.3  |  Case study: Eastern north American odonates

2.3.1  |  Study organism

Odonates are globally widespread aquatic insects that live in a wide 
range of freshwater systems. They are charismatic, easy to detect 
and identify, and popular among nature enthusiasts. Both larvae and 
adults are generalist predators and interact with a large number of 
aquatic and terrestrial taxa. In North America, there are 462 spe-
cies (136 Zygoptera and 326 Anisoptera), with 336 species on the 
east coast (Paulson, 2011). Odonates are sensitive to environmental 
change, particularly climate warming, and evidence suggests that 

F I G U R E  2  Schematic depicting data processing workflows. Workflows differ in which sites and time intervals they model. Small black 
and white panels show, for species i , which site × visit interval combinations from the larger panels are modelled in each workflow, with black 
denoting a modelled site × visit interval combination and white a non- modelled combination. For example, WFrange,all models all visit intervals 
for every site within the range of species i , but none of the sites outside of it. Colours in large boxes behind small panels correspond to 
colours in subsequent figures (purple indicates workflows that model all sites regardless of visit; blue indicates workflows that model all sites 
with positive detections; green indicates workflows that model the true visit history). The values of both K and I  are choices one must make 
when collapsing data prior to analysis. In our analyses, we use K = 2, 5, 10 and I = 3

1 2 K

...

No visit occurred
Visit occurred, nothing detected
At least one species detected
Species i detected

Range of
species i , Ri

Site 1
Site 2
...

Site J

Occupancy interval

1 2 3
Visit interval ( I = 3 )

1 2 3 1 2 3

WFall,all WFall,detected WFall,visits

WF range,all WF range,detected WF range,visits
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they respond by shifting their phenology and geographical distribu-
tion (Hassall et al., 2007; Hickling et al., 2005), making them interest-
ing sentinels of climate change.

2.3.2  |  Odonate dataset

We selected 27 states in Eastern North America from GBIF (https://
doi.org/10.15468/ dl.cabqrc). The data comprise 47,378 records of 
368 species observed during 1970– 2019 and show a clear increase 
in the number of records through time, with 70.3% of the records oc-
curring in the last two decades (2000– 2019). We partitioned records 
into ‘sites’ by overlaying a grid of 100 × 100 km cells and filtered to 
include only species with more than 100 occurrences (195 species) 
across 265 sites and five occupancy intervals (decades), each further 

partitioned into ten 1- year visit intervals. We also considered a sce-
nario comprising 5- year occupancy intervals (for a total of K = 10) 
which we present in Figure S5. We decided to use a single year as a 
visit interval (for both 5- year and 10- year occupancy intervals).

2.3.3  |  Analysis of the odonate dataset

We provide guidelines for researchers when analysing historical 
museum records with occupancy models (Figure 3) and we dem-
onstrate application of these steps using the above- described odo-
nate dataset. Specifically, we use a multispecies occupancy model, 
as described in Supporting Information. For each species, we con-
struct the geographical range by drawing a convex polygon around 
all occurrences records. Because this method might overestimate 

F I G U R E  3  Steps that researchers can take to analyse historical record data using occupancy models, illustrated using a dataset of 
odonate occurrences. (1) eEstimate the probability of community sampling events. We used a spatiotemporal clustering procedure for our 
odonate data. (2) Decide on the spatiotemporal scope of the analysis. We recommend choosing 5 or more occupancy intervals. (3) Decide 
whether restricting inference to species ranges is important for your model. (4) Decide if non- detections should be inferred at a particular 
taxonomic level. (5) Check if the site- visitation history is increasing, decreasing or staying the same. (6) Remove sites that may only be 
present in a single occupancy interval. (7) Re- evaluate from Step 2 onwards if estimated community visitation probability and visit histories 
do not meet recommended thresholds

01
STEP Check the probability of community 

sampling events

02
STEP

Decide on the spatial and temporal 
scale of the analysis and the size of the 
length of occupancy intervals and visit 
intervals

03
STEP Depending on the spatial scale of the 

analysis, check for overlap in species 
ranges

04
STEP

Check the taxonomic scale and sampling 
methodology consistent with the taxa in 
mind, should non-detections be inferred 
across genus or family level? Then, infer 
non-detections

05
STEP Check whether the visit history 

increases, decreases or stays constant 
through occupancy intervals

06
STEP Remove sites that are only present in a single 

occupancy interval. These sites contribute 
less to estimates of changes in occupancy 
and do skew the visit history through time

07
STEP If the visit history decreases through 

time and the probability of community 
sampling events is too low, then 
re-evaluate from step 2 onwards

Range  overlap

Decrease Increase Stable

01
STEP The Odonate data-set had 7451 of unique 

dates with observations where multiple 
species were observed

02
STEP The temporal range of the analysis is from 

1970 to 2020. An occupancy interval is a 
period of 10 years, while a visit interval is a 
period of 1 year

03
STEP

04
STEP

We did not infer non-detections differently 
based on taxonomy

We used convex hull to infer the range of 
species

05
STEP The average number of visits for our odonate 

dataset remained relatively stable in 
occupancy intervals 1-4 and decreased 
slightly in occupancy interval 5

06
STEP We found that the odonate data-set had 4 sites 

that were only visited in a single occupancy 
interval

07
STEP Based on spatiotemporal clustering, we found 

that our Odonate data-set included 39.7% 
”community visits” while the rest were single 
specimen events

Family / Genus

1 0 0 01 11

Steps for Analyzing Occurrence Data Example with Odonate Dataset

Time
10 years

1 year

Occ. interval
Visit interval

Sp
ac

e
Ti

m
e

https://doi.org/10.15468/dl.cabqrc
https://doi.org/10.15468/dl.cabqrc
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or underestimate ranges for some species, we suggest that when 
applying our methods, users should also rely on other available 
information such as expert range maps, if available. We process 
the data under the WFrange,detected (best case scenario on simulated 
data, excluding WFrange,visits which is not possible for empirical data), 
WFall,detected (ignores underlying species ranges) and WFrange,all (models 
all visits, regardless of whether or not visits likely occurred). We also 
assessed how many of the records in our dataset likely originated 
via community sampling vs. targeted sampling visits. To do this, we 
grouped records collected on the same day and within 1 km of one 
another. We assumed that a community sampling event occurred 
if more than one species was present in each grouping. While this 
is likely a rough approximation of the actual fraction of community 
sampling events, it lets us quickly approximate this quantity without 
having to use more time- consuming methods like a detailed analysis 
of collector identities, etc.

We performed all analyses with R4.1.2 (R Core Team, 2021). 
We used the nimble package to compute our models (de Valpine 
et al., 2017). All of the code utilized in our study is available at 
https://github.com/lmguz man/occ_histo rical. A static repository for 
the code and data can be found via DataDryad by the following DOI: 
https://doi.org/10.5061/dryad.s1rn8 pk9q (Shirey et al., 2022a); 
code also accessible via Zenodo at https://doi.org/10.5281/ zenodo. 
6439325 (Shirey et al., 2022b). The odonate dataset was down-
loaded from GBIF and can be found by the following DOI: https://
doi.org/10.15468/ dl.cabqrc (GBIF, 2021).

3  |  RESULTS

3.1  |  Simulation study

The choice of data processing workflow directly affects infer-
ences made by occupancy models. Not surprisingly, only includ-
ing site × visit interval combinations where visits actually occurred 
(WFall,visits) yields better estimates than approaches that infer site 
visitation, and this is invariant to the fraction of visits that repre-
sent community sampling events (Figure 4). Performance of work-
flows that infer species' non- detections by either modelling all visit 
intervals (WFall,all) or only visit intervals where at least one species 
was detected (WFall,detected) depends on the fraction of visits that are 
community sampling events. Specifically, when all site visits corre-
spond to community sampling events (�com = 1), inferring species 
non- detections based on recorded detections of other species is 
sensible and, consequently, WFall,detected performs as well as WFall,visits 
(Figure 4). In contrast, when all site visits are targeted sampling 
events, (�com = 0), detections of one species provide little informa-
tion about non- detections of other species and, consequently, both 
WFall,detected and WFall,all yield biased estimates of occupancy change 
through time (purple and blue curves are much higher than green 
curve for small values of �com in Figure 4).

Model error increases as the minimum fraction of visits that cor-
respond to community sampling events decreases and, furthermore, 
the extent of this error depends on (a) the number of occupancy 

F I G U R E  4  Root mean squared error 
(RMSEs) across replicate simulated 
datasets for model estimated temporal 
trends in occupancy, �

� ,OI (left) and 
detection, pOI (right). When we only 
model time intervals where visits actually 
occurred (green, WFall,visits), estimates of 
change in occupancy (�

� ,OI ) and detection 
(pOI) are generally more accurate (lower 
root mean square error RMSE) compared 
to workflows where we either model only 
visits with at least one species detected 
(blue, WFall,detected) or where we model 
all time intervals (purple, WFall,all). This 
difference is largest when the fraction 
of community sampling events is low 
(small �com). Across the board, models that 
comprise a greater number of occupancy 
intervals generally yield more precise 
estimates (compare rows and the different 
range of values for the y- axis). �

�,OI = 0

, species were simulated to occur in all 
sites, all other model parameters can be 
found in Table S1
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intervals, (b) whether species' ranges are incorporated into the 
analysis, (c) the extent to which site visitation probability changes 
through time, and (d) the extent to which occupancy and/or detec-
tion probability changes through time. We will discuss these pro-
cesses next.

In general, estimated temporal changes in occupancy and/or de-
tection probability through time are more accurate when data are 
binned as finely as possible (i.e. into a greater number of occupancy 
intervals; larger K) and this conclusion is true across data processing 
workflows (compare rows in Figure 4). Binning data into 10 occu-
pancy intervals led to better estimates of changes in occupancy and 
detection through time than binning into five or two occupancy in-
tervals (Figure 4, note the different scales on the y- axes). Estimates 
for changes in detection through time are, however, less sensitive to 
both the fraction of visits that comprise community sampling events 
and to the workflow (Figure 4).

We simulated datasets either by assuming that every species 
could potentially occupy every site or by assuming species were 
constrained to different (possibly overlapping) geographical ranges. 
We subsequently differentiate our data processing workflows into 
those that ignore potential differences in species ranges (WFall,all, 
WFall,detected and WFall,visits, which we collectively label as WFall,X) and 
those where each species is modelled over only the sites in its range 
(WFrange,all, WFrange,detected and WFrange,visits, which we collectively label 
as WFrange,X). When all species could plausibly occupy all sites, WFall,X 
and WFrange,X become equivalent. Workflows that correctly match 

the workflow with the underlying species' ranges (either WFall,X 
when all the species were simulated to plausibly occupy all sites or 
WFrange,X when species ranges were simulated) generally had lower 
error rates in changes of occupancy through time than the case 
where the data processing workflow mismatched the underlying 
species ranges (using WFall,X when species ranges were simulated) 
(Figure 5a,e vs. c).

When the probability of site visitation decreased through time, 
we found that workflows that attempted to infer and model spe-
cies' detections based on recorded presences of other species (e.g. 
WFrange,detected) needed a higher probability of community sampling 
events to perform well (Figure 6a,b), compared to cases where the 
probability of site visitation increase or stayed constant through 
time (Figure 6c– f). Generally, when a lower fraction of the visits cor-
respond to community sampling events. For instance, models yield 
accurate estimates of occupancy and detection when only 25% of 
site visits are community sampling events, as long as the site vis-
itation probability increased through time, the number of occu-
pancy intervals was high (K = 10), the data processing workflow 
took into account the underlying species ranges and species' non- 
detections were only inferred when other species were detected (i.e. 
WFrange,detected).

Because real- world changes in quantities such as site visitation 
rate, occupancy, detection and collector behaviour are potentially 
changing through time, we ran a full suite of occupancy models that 
included 375 workflow- simulation combinations with 10 replicates 

F I G U R E  5  Root mean squared error 
(RMSEs) across replicate simulated 
datasets for model estimated temporal 
trends in occupancy, �

� ,OI (left) and 
detection, pOI (right). Coloured lines 
denote workflows (in the legend, X 
denotes either ‘range’ or ‘all’). The 
different rows show the effect of ignoring 
species ranges depending on whether 
ranges were simulated or not. In panels (a) 
and (b) (Simall), all species could plausibly 
occupy all sites (each species' range 
comprised all the sites), whereas in panels 
(c)– (f) (Simrange) species were simulated to 
have ranges. WFall,X is the data processing 
workflow where all sites are included 
in the occupancy model (c and d, i.e. 
the ranges modelled do not match the 
ranges simulated) and WFrange,X is the data 
processing workflow where the only sites 
that are included in the model are the 
ones that fall within a species range (e and 
f, i.e. only sites that fall within a species 
range are modelled so the modelling 
matches the ranges simulates). �

�,OI = 0, 
number of modelled occupancy intervals 
is K = 5
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per combination for a total of 3,750 simulation runs. Root- mean 
squared errors (RMSEs) from this full set of workflow- simulation 
configurations revealed that overestimation of occupancy declines 
is likely to occur when the fraction of visits that are community fo-
cused is low (0– 0.25) and this is especially true when detection and 
visit probability decrease through time (Figures S1– S3).

3.2  |  Case study: Eastern north 
American Odonates

To examine occupancy trends for eastern North American odonates 
from the 1970s through 2010s, we ran occupancy models on data 
prepared using each of the processing workflows WFrange,detected,  
WFall,detected and WFrange,all. We found that the proportion of site × 
occupancy intervals × visit interval combinations that were likely 
community samples in this data was ∼ 60.3%. To increase this meas-
ure, we applied stricter filtering criteria to the original dataset. 
Specifically, we restricted our records to only those from site × oc-
cupancy interval × visit interval combinations where at least 50% of 
sampling events were inferred to be community sampling events (i.e. 
multiple species detected on the same day within 1 km × 1 km from 
each other). This led to an estimated global proportion of commu-
nity samples equal to 89.4%. Even though we removed sites that did 
not have enough community sampling events, we still used the same 
range regardless of the sites included based on the proportion of 

community events. We then re- ran an occupancy model using our 
best performing workflow (WFrange,detected) on this restricted dataset.

In general, we found that mean occupancy increased over 
the past four decades. However, species trends were highly vari-
able, with many increasing while others decreased. Using a range- 
restricted workflow, our odonate results became less extreme in 
terms of overall, species- specific occupancy change from the 1970s 
to 2010s (Figure 7). For example, the WFall,detected workflow yields 
72 species that are either increasing or decreasing by at least 25%, 
whereas WFrange,detected reduces this figure to 39 species (5 species 
for WFrange,detected when we filtered the data to have a higher propor-
tion of community sampling events; Figure 7d).

4  |  DISCUSSION

We assessed the performance of different data- processing workflows 
when applying multi- species occupancy models to simulated datasets 
to identify a set of best practices guidelines one might follow when an-
alysing historic museum records or unstructured data. Our work here 
confirms the importance of restricting species- specific analyses across 
large geographical scales to those species' ranges. Furthermore, infer-
ring non- detections of species from other species' detections emerged 
as a better approach than simply modelling all possible visit intervals 
at all sites. Our analysis also determines the extent to which patterns 
in data sampling, such as changing collector behaviour, can undermine 

F I G U R E  6  Root mean squared error 
(RMSEs) across replicate simulated 
datasets for model estimated temporal 
trends in occupancy, �

� ,OI (left) and 
detection, pOI (right). Changes in 
occupancy (�

� ,OI) and detection (pOI) 
through time are estimated with less error 
(RMSE) using the workflow WFrange,visits 
than WFrange,detected . This error depends on 
the probability of community visits �com 
and the change in visit history through 
time (�

�,OI) (decreasing visit probability, 
a and b; stable visit probability, c and d; 
and increasing visit probability, e and f). 
Number of modelled occupancy intervals 
is K = 10
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our ability to infer trends using occupancy models from historic re-
cords. In addition, workflows that bin occurrence data into fewer oc-
cupancy intervals are generally less accurate.

Inferring non- detections of some species based on recorded 
observations of other species is becoming a more frequent prac-
tice when working with presence- only occurrence data, but spe-
cific approaches differ. For example, van Strien et al. (2013), Kamp 
et al. (2016) and Powney et al. (2019) inferred non- detections for a 
particular species if a different species was observed at that same 
site on the same date. Outhwaite et al. (2019) used the same ap-
proach, but only inferred non- detections for species from the same 
taxonomic group as the observed individual(s). Analyses using these 
approaches have mostly taken place in Europe and with taxonomic 
groups where community science approaches yield structured 
datasets, for example those from regional monitoring schemes  

(van Swaay et al., 2008). For example, Johnston et al. (2021) found 
that well- curated checklists combined with incomplete checklists 
were sufficient to enable reasonable estimates of occupancy, but 
not encounter rates. Here we have quantified the extent to which 
a dataset can comprise incomplete checklists or simply individual 
observations while still producing good parameter estimates. We 
found that, for the cases considered here, our workflows produced 
reliable estimates of occupancy trends through time when at least 
50% of the samples derive from community sampling events.

Obtaining an approximate estimate of how frequently collectors 
sample the entire community, versus only collect individual species, 
is a necessary step in assessing whether the methods we use here 
are likely to be appropriate. Unfortunately, direct measurement of 
this quantity is often impossible for large historic datasets and, thus, 
we suggest that researchers approximate this metric to the best of 

F I G U R E  7  Species- specific (coloured lines) and community (black line) trends for eastern North American odonates under three 
data processing workflows: (a) WFall,detected, (b) WFrange,all, (c– d) WFrange,detected . In (d), we further restrict analyses to only site × occupancy 
interval × time interval combinations where the proportion of clustered collection events containing two or more species exceeds 0.5. Lines 
are coloured to indicate occupancy trend through time (difference from occupancy interval 1 to occupancy interval 5). Inset histograms 
show these occupancy differences. Black dashed lines denote 95% Bayesian credible intervals
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their ability. In our odonate analysis, we grouped records in space 
and time and assumed that specimens collected on the same day and 
nearby to one another were part of the same collection event. Based 
on our simulated datasets, we conclude that using two occupancy 
intervals is generally a bad practice as estimates of occupancy trends 
have high error. In workflows that span a greater number of occu-
pancy intervals, the probability of required community visits could 
conceivably be as low as 25%; however, this likely depends on other 
data- specific trends and parameter estimates, and we would sug-
gest that authors conducting such analyses always use simulation 
to guide their analyses and extensive examination of the patterns 
in the raw data (i.e. potential visitation trends). Our examination of 
interactions between changes in occupancy and detection proba-
bility over time as well as changes in visitation probability revealed 
that when detection probability or when visit probability decrease 
over time, overestimation of occupancy declines will likely occur in 
datasets where the probability of community visits is less than 0.5 
(Figures S8– S10).

In applying our different workflows to a large historic dataset 
for eastern North American odonates, we demonstrate that neglect-
ing to incorporate estimates of species' ranges demonstrates how 
different workflow choices can impact downstream results with a 
real- world dataset. In particular, the results from this analysis show 
how data filtering can reduce the estimation of dramatic occupancy 
increases and declines (Figure 7a vs. Figure 7b– d). Overestimation 
of occupancy change is a known behaviour of occupancy– detection 
models when heterogeneous observer effort is not accounted for 
(Kéry & Royle, 2020). Our findings generalize this conclusion to 
show that similar overestimation is possible when species are mod-
elled outside of their ranges (using the odonate example), when 
species are modelled in all time intervals, or when there is too few 
community sampling events (using simulated data).

Using the best workflow to analyse the odonate dataset, we 
found that the majority of species have exhibited range expansions 
while a few have exhibited range contractions in the eastern United 
States. This is mostly concordant with the assessment of the con-
servation status and population trends of the IUCN Red List at the 
global scale which lists all studied species as Least Concern with sta-
ble or increasing population trends. Odonates have a high ability to 
colonize new suitable habitats following the warming of cool areas 
(Hickling et al., 2005) or the creation of artificial sites (e.g. ponds 
for irrigation) (Simaika et al., 2016). The observed low- range con-
tractions might be due to their ability to rapidly recolonize areas 
where they were temporarily extirpated (Shiffer & White, 2014), 
which is often observed at the local scale in the studied area (Shiffer 
et al., 2014, 2015). Studies using occupancy models to assess the 
temporal pattern of the geographical distribution of odonates at a 
large scale are rare (Rocha- Ortega et al., 2020); however, they may 
be possible under the occupancy– detection framework.

While we only use ‘single- season’ occupancy models in our 
analyses here, we also explored (but do not present) dynamic oc-
cupancy models which link each occupancy interval via extinction– 
colonization dynamics (Royle & Kéry, 2007). In general, we found 

that these models performed poorly unless the probability of com-
munity visitation was high. Missing visits/occupancy intervals in the 
dynamic framework created multiple possibilities for parameter es-
timation, where a single occupancy interval with missing data could 
represent extinction followed by colonization, or persistence; multi-
ple consecutive occupancy intervals with missing visits simply com-
pounds the number of possibilities. We expect that many historical 
datasets likely do not have enough data to make dynamic models 
feasible. However, for many questions, single- season models param-
eterized with appropriate fixed and random temporal effects should 
suffice.

Processes which generate unstructured occurrence data are 
complex and it is likely that the fraction of community sampling 
events (vs. targeted sampling) varies across occupancy intervals 
and through time. This may be especially relevant if researchers are 
interested in utilizing combined museum specimen and community 
science records for inference. Individual collector behaviours may be 
important in models using these combined datasets given that col-
lector behaviour has a potentially large effect on community science 
outcomes (Di Cecco et al., 2021). Incorporating these processes is an 
increasingly important task, as community science records far out-
pace the digitization and collection of specimens via other methods 
in the last decade (Shirey et al., 2021; Spear et al., 2017).

While the current paper presents context to certain technical as-
pects of occupancy models that may have important consequences, 
there are many further complications that require additional at-
tention. For example, restricting species' range in multi- species 
occupancy modelling is a good general practice when estimating 
occupancy and detection. However, if researchers are interested in 
shifts in species ranges outside of their currently considered range 
(e.g. range expansion), the set of modelled sites for a given species 
needs to be sufficiently large to allow for such range expansions. 
Adding a buffer around a species' inferred range is a possible solu-
tion, but such decisions should be explored via simulation in more 
detail.

5  |  CONCLUSIONS

Our analyses of simulated data demonstrate that for some un-
structured data, robust estimates of temporal trends in occupancy 
and/or detection can be obtained, particularly when (a) community 
sampling events comprise at least half of all sampling events and 
(b) when analyses span a greater number of occupancy intervals. 
We strongly encourage researchers to ‘get to know’ their data by 
assessing the ways in which it has been historically collected and 
curated and to perform, at a minimum, the guidelines we propose 
in this paper. Estimating the fraction of collection events that were 
community sampling events is critical for assessing how reliable 
occupancy– detection estimates may be. Overall, understanding 
when occupancy models are likely to fail and lead to incorrect in-
ferences is a must when applying these models to historical mu-
seum records.
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