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Abstract. Projecting species’ responses to future climate conditions is critical for anticipating conserva-
tion challenges and informing proactive policy and management decisions. However, best practices for
choosing climate models for projection ensembles are currently in flux. We compared including a maxi-
mum number of models against trimming ensembles based on model validation. This was done within the
emerging practice of ensemble building using an increasingly larger number of global climate models
(GCMs) for future projections. We used recently reported estimates on primary drivers of population fluc-
tuations for the migratory monarch butterfly (Danaus plexippus) to examine how multiple sources of uncer-
tainty impact population forecasts for a well-studied species. We compared mean spring temperature and
precipitation observed in Texas from 1980 to 2005 with predictions from 16 GCMs to determine which of
the models performed best. We then built tailored climate projections accumulating both temperature (in
the form of growing degree days) and rainfall using both “complete” (all 16) and “trimmed” (best-
performing) ensembles based on three emission scenarios. We built the tailored projections of spring grow-
ing conditions to assess the range of possible climate outcomes and their potential impacts on monarch
development. Results were similar when mean predictions were compared between trimmed and com-
plete ensembles. However, when daily projections and uncertainty were accumulated over the entire
spring season, we showed substantial differences between ensembles in terms of possible ecological out-
comes. Ensembles that used all 16 GCMs included so much uncertainty that projections for future spring
conditions ranged from being too cold to too hot for monarch development. GCMs based on best-
performing metrics provided much more useful information, projecting higher spring temperatures for
developing monarch larvae in the future which could lead to larger summer populations but also suggest-
ing risk from excessive heat. When there is a strong basis for identifying mechanistic drivers of population
dynamics, our results support using a smaller subset of validated GCMs to bracket a range of the most
defensible future environmental conditions tailored to the species of interest. Yet understating uncertainty
remains a risk, and we recommend clearly articulating the rationale and consequences of selecting GCMs
for long-term projections.
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INTRODUCTION

Projecting species’ responses to global change
is critical in a world that is rapidly transforming
(Ara�ujo and New 2007, Petchey et al. 2015,
Houlahan et al. 2017, Dietze et al. 2018). Ecologi-
cal projections may inform conservation actions
and influence far-reaching policy decisions
(Buckley and Cserg}o 2017, Trivi~no et al. 2018).
Understanding where threats occur and how
these threats may be affecting species differen-
tially throughout their range is particularly chal-
lenging (Yates et al. 2018). Further, when making
projections, multiple sources of uncertainty accu-
mulate substantial error that can be difficult to
quantify and interpret. Here, we use the term
“projection” to mean predictions generated from
ecological process models that are parameterized
with future conditions generated from scenario-
based global circulation models (GCMs).
Although the purpose of our study is to assess
ecological projections in relation to population
dynamics, we focus specifically on the choice of
atmosphere–ocean coupled GCMs as there has
been little recent guidance on this within the eco-
logical community.

To explore climate model selection and projec-
tion approaches, we place these topics within the
larger framework of both accumulating uncer-
tainty and also system nonstationarity. The prob-
lem of properly accumulating uncertainty within
modeling frameworks is one that is complex, but
familiar to most ecologists (Iles and Jenouvrier
2019, Zylstra and Zipkin 2021). Nonstationarity
is a more novel framework and indicates nonlin-
ear dynamics or complex interactions that are
often not estimable within the boundaries of ini-
tial model-building space and can thus cause
substantial divergence between projected and
observed outcomes (Mouquet et al. 2015, Rollin-
son et al. 2021). Nonstationarity is often the pri-
mary culprit when models fail to transfer across
time or space (Yates et al. 2018). For a spatial
example, the relationship between species abun-
dance and a covariate, such as precipitation, may
vary throughout a species’ range, as is the case
for Northern cardinals across North America
(Rollinson et al. 2021). However, if a model is
parameterized solely in one ecoregion (e.g., tem-
perate zones) and then projected to a new region
where the timing or amount of precipitation is

fundamentally different (e.g., deserts), it is highly
unlikely that the same model parameterization
would transfer to this new region. A temporal
example is the study of forest composition in the
eastern United States that shows a decades-long
shift from oak to maple dominance (McEwan
et al. 2011). Research shows that this shift has
been facilitated by several stressors that have
been changing over time, including the loss of the
chestnut tree, growth in deer browse, and trends
in climate over the past century. Thus, predictive
models of forest composition developed during
any subset of decades may not transfer well
across time because the dominant drivers have
been consistently shifting (Rollinson et al. 2021).
This issue can expand beyond changes in param-
eter estimates and ultimately be rooted in uncer-
tainty related to the underlying structure of the
model itself (e.g., does the model contain the rele-
vant covariates and is the relationship correctly
captured mathematically). Nonstationarity fun-
damentally calls into question our ability to ever
account for all the unknown factors that may
become important when making forecasts, but it
also provides a framework for exploring when
projections fail, even if models performed well
during the validation phase. Despite all these
sources of uncertainty (ecological, climate, and
system nonstationarity), long-term forecasts are
useful for considering future ecological condi-
tions given our current understanding of a study
system. Nevertheless, these challenges require
clarity on the underlying model assumptions
within the context of climate-based projections
(Ara�ujo and New 2007, Braunisch et al. 2013, Sohl
2014, Yates et al. 2018).
Climate scenarios themselves are developed

by a global network of climate centers that collec-
tively create dozens of individual—albeit not
independent—GCMs (reviewed for ecologists in
Harris et al. 2014, Baker et al. 2017). Yet there is
rarely one GCM that best captures a specific
region’s climate, and some GCMs perform partic-
ularly poorly in different regions or for specific
metrics (Ara�ujo and New 2007). This variability
in model performance had led to the practice of
choosing an ensemble of GCMs based on how
well their projections into the past most closely
match the observed climate (Knutti et al. 2010,
Harris et al. 2014, Baker et al. 2017, Karmalkar
et al. 2019). Choosing this ensemble impacts both
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the specific projections and associated uncer-
tainty, but formal guidelines for making these
choices remain scarce (Gould et al. 2014, Baker
et al. 2017, Harris et al. 2018, Iles and Jenouvrier
2019). This knowledge gap is problematic
because comparison studies have found that
determining GCM performance for individual
systems is particularly sensitive to the specific
“skill” (or training) metric used for GCM valida-
tion (Reichler and Kim 2008, Snover et al. 2013,
Sofaer et al. 2017, Karmalkar et al. 2019). The
choice of skill metric can have substantial impact
on the projected scenarios even when compared
skill metrics are highly correlated (Braunisch
et al. 2013). The fact that these validation studies
are extremely sensitive to the choice of skill met-
ric has led to multiple, but varying recommenda-
tions for building ensembles, such as using
multiple test metrics (Braunisch et al. 2013),
focusing on spatial pattern reconstruction (Nash-
wan and Shahid 2019), developing ensembles
based on capturing structural differences
between models (Lutz et al. 2016), and emphasiz-
ing multiple runs of individual models (Kay
et al. 2015), or a hybrid of these approaches
(Farjad et al. 2019).

Exercises in validation and ensemble-building
presume that models with the best hindcast per-
formance will also produce the best forecasts,
which is sometimes not the case (Ara�ujo and
New 2007, Yates et al. 2018). Ultimately, the vali-
dation that hindcasts were successful in making
projections can only be achieved by waiting for
the opportunity to make those validations in the
future. Most studies are not long term enough to
achieve this, although a new focus on iterative,
short-term forecasting provides a framework for
confronting this issue (Dietze et al. 2018). One
arena that has been able to most fully track the
connection between past and future performance
is within the climate modeling community itself;
comparisons of past forecasts to eventual out-
comes have been presented within IPCC reports
and model forecasts were shown to be well
within the originally projected uncertainty bands
(Stocker et al. 2013). While the potential discon-
nect between past and future performance makes
any attempt to project models beyond the initial
observation space challenging, we suggest that
system nonstationarity provides the best frame-
work to explore when past performance may not

be indicative of future performance (Rollinson
et al. 2021).
Another substantial issue for ecologists when

choosing GCMs is that the vast majority of stud-
ies where ecological dynamics are projected into
the future rely on bioclimatic covariates that
emerge from correlative species distribution
models (SDMs) (Ara�ujo and New 2007, Ehrl�en
and Morris 2015). These, also known as “niche”
or “climate envelope” models, have a weak basis
for inferring underlying mechanisms (Kearney
and Porter 2009, Braunisch et al. 2013, Ehrl�en
and Morris 2015). Given that ensemble model
validations are highly sensitive to the skill metric
used, the recommendation to use a more inclu-
sive set of GCMs when building ensembles
makes sense, even though that may bias the
resulting ensemble (Braunisch et al. 2013) and
also increases the incorporated uncertainties
(Cavanagh et al. 2017). Indeed, most recent stud-
ies making ecological projection have used
ensembles of 10–30 GCMs (e.g., Hotta et al. 2019,
Jakoby et al. 2019, Laskin et al. 2019, Svancara
et al. 2019) where until the early 2010s, it was
much more typical to use 4–5 (Fordham et al.
2011). Robust evidence of dominant drivers is
derived only through mechanistic ecological
studies (Braunisch et al. 2013, Sofaer et al. 2017),
which are challenging to produce and are rarely
available for most species or systems. Yet when
this robust evidence is available, the argument
for building ensembles using a smaller set of
GCMs validated with well-supported skill met-
rics is that it increases the potential for reducing
bias (Braunisch et al. 2013) and better character-
izes the uncertainty in climate projections (Cava-
nagh et al. 2017).
The potential to use climate covariates that

emerge from mechanistic studies as a basis for
forward projections raises another, related chal-
lenge. Specifically, that the typical suite of cli-
mate variables that are packaged and released by
global climate centers may not include the envi-
ronmental variables identified by mechanistic
research as being the most relevant drivers for a
particular species. For example, daily or monthly
rainfall is a commonly available variable in most
climate projection products, but not a metric esti-
mating long-term drought. When mechanistic
studies identify climate covariates not typically
available, it may be necessary to tailor the GCM
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output via calculations on raw data to align pro-
jection covariates with the most relevant metrics
(e.g., Cook et al. 2010, Terando et al. 2012, Baker
et al. 2017, Jenouvrier et al. 2019, Laskin et al.
2019) rather than use packaged projections that
are released to the public. Of the hundreds of
papers published in the last thirty years that
make ecological projections, relatively few specif-
ically tailor their climate projections based on the
primary climate factors emerging from the
results of mechanistic studies (but see Jenouvrier
et al. 2012, Renwick et al. 2018, Dorado-Li~n�an
et al. 2019, Wang et al. 2019).

We use the eastern migratory monarch butter-
fly (Danaus plexippus) as a case study to examine
the specific consequences of having a more
restricted vs. inclusive approach to assembling
GCMs for making ecological projections and on
our ability to interpret those results. Understand-
ing where threats occur at global scales and how
these threats may be affecting species differen-
tially throughout their range is particularly chal-
lenging for migratory species (Hostetler et al.
2015). We leveraged an extensive history of
mechanistic studies to identify the dominant cli-
mate drivers of year-to-year variability and asso-
ciated nonstationarity in annual monarch
population sizes during summer. Because one of
the climate metrics that best predicts monarch
abundances, growing degree days (GDD,
explained below), is not among the variables pro-
vided with most climate data products, we tai-
lored our GCM forecasts to specifically quantify
this metric. We then compared projected condi-
tions using inclusive vs. restrictive rules for
ensemble development based on specific skill
metrics most relevant to monarch biology.

The monarch butterfly as a model system for
global change ecology

Monarch butterflies are distributed around the
globe, but their largest single population and
the one that has received the most attention is
the migratory population in eastern North Amer-
ica (Gustafsson et al. 2015). This population com-
pletes a yearly, multigenerational round-trip
migration that takes it from a small set of moun-
taintops in central Mexico, where individuals
overwinter in mass aggregations, to as far north
as southern Canada (Appendix S1: Fig. S1). Indi-
viduals that had flown south to Mexico the

previous fall begin the journey back north in
February and generally make it as far as Texas
and the surrounding region by mid-March.
There, they lay eggs on milkweeds (sub-family
Asclepiadoideae) and when those eggs hatch, the
developing caterpillars feed, pupate, and emerge
as adults in mid-April. Those adults then con-
tinue the northward journey to the monarch’s
primary, summer breeding grounds, which
encompasses a northern band from approxi-
mately 38 to 50 degrees latitude east of the 100th
meridian (Appendix S1: Fig. S1). This northern
breeding population produces an additional 2–3
generations over the course of the summer.
Beginning in mid-August, the final generation of
the year starts a southward migration back to the
same region in central Mexico where their great
(or great-great) grandparents spent the previous
winter (Gustafsson et al. 2015).
The eastern migratory monarch is an ideal sub-

ject for global change research because it is so
intensively monitored with multiple programs
focused on adult migration, juvenile develop-
ment, and adult abundance throughout its range.
Just in 2011, hundreds of volunteers spent an esti-
mated 72,000 h (the equivalent of ˜35 full-time
worker-years) collecting data throughout North
America, with about half of those surveys focused
solely on the monarch as opposed to on butterflies
generally (Ries and Oberhauser 2015). This level
of public engagement is partially due to the mon-
arch being a cultural icon and a flagship species
for both insects and migration (Gustafsson et al.
2015). The monarch is also widespread, highly
detectable, and easy to identify making data col-
lection by the public particularly tractable. This
has led to an intense focus on the monarch, as
both a subject of science monitoring by the public
(Ries and Oberhauser 2015) and of conservation
concern (Gustafsson et al. 2015). Public concern
for the monarch escalated after declines were
identified in the eastern population (Brower et al.
2012). The population remains well below its pre-
vious maximum-observed size (Thogmartin et al.
2020) and has recently been declared deserving of
protection under the Endangered Species Act,
although it was not listed so that other species
could be prioritized for management (USFWS
2020). This means that continual monitoring and
reassessment of the monarch will remain a critical
need both to understand its dynamics but also to
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provide the US Fish andWildlife Service the infor-
mation they require for their yearly deliberations.
These studies reveal that many of the biggest dri-
vers of global change on biodiversity, including
climate, land use, and agricultural practices such
as chemical spraying impact the monarch (Ober-
hauser et al. 2017, Malcolm 2018, Wilcox et al.
2019) but that those forces change over time
(Saunders et al. 2018, Zylstra et al. 2021).

Over the last two decades, spring temperature
and rainfall in Texas consistently account for
the majority of year-to-year variability in the
end-of-summer monarch population size in their
Midwest breeding grounds (Zipkin et al. 2012,
Saunders et al. 2016, 2018, Crewe et al. 2019, Zyl-
stra et al. 2021). Saunders et al. (2016) showed that
the combination of mean average rainfall and
mean temperature across Texas, as measured via
GDD during the spring breeding season, best
explained variability in that year’s summer mon-
arch population size in the Midwest, which lar-
gely determines the size of the overwintering
population (Flockhart et al. 2017, Saunders et al.
2019). Although spring GDD and precipitation
were the best predictors of monarch population
size, this relationship was strongest during “typi-
cal” springs. In other words, monarch summer
population sizes were more difficult to predict
when spring weather was unusually hot, cool,
wet, or dry (Saunders et al. 2016), indicating non-
stationarity in the underlying ecological processes.

These climate predictors of yearly monarch
population size emerge from models based on a
priori hypotheses built on years of mechanistic
research (e.g., Zalucki 1982, Nail et al. 2015, Ries
et al. 2015a, Flockhart et al. 2017, Agrawal 2019,
Crewe et al. 2019). When underlying ecological
mechanisms, including the dominant climate dri-
vers, have strong support in empirical evidence,
it is unclear if the emerging practice of using the
most inclusive set of GCMs for climate projection
ensembles is sound or if that unnecessarily
inflates uncertainty (e.g., Cavanagh et al. 2017).
Here, we explore the issues of GCM selection
and projection uncertainty using the monarch
butterfly as a case study to achieve the following
objectives:

1. Evaluate and select the best GCMs from a
suite of 16 models that are most often used
for North America to produce tailored

environmental projections for the monarch
butterfly based on spring climate (tempera-
ture and rainfall) in Texas.

2. Implement the ensemble of models chosen
in objective 1 (“trimmed” ensemble) and
compare climate projections to those from a
full set (“complete” ensemble) using differ-
ent emission scenarios calculated for three
time periods (near-future, mid-future, and
end-century).

3. Based on both sets of results, compare the
projected climate change implications for
monarch spring breeding under different
emission scenarios at different time periods
in the future, while accounting for both
uncertainty and nonstationarity.

METHODS

Objective 1: Model evaluation and selection for
“trimmed” ensemble
To evaluate which GCMs should be retained in

an ensemble of best-performing models, we com-
pared observed climate in Texas to the projected
hindcasts from a set of 16 GCMs acquired from
the 5th iteration of the Coupled Model Intercom-
parison Project (CMIP5; see Appendix S1: Fig. S2
for a workflow). The CMIP project provides com-
munity access to consistent GCM implementa-
tions, including both hindcasts and future
projections based on a set of shared scenarios of
greenhouse gas emissions (Taylor et al. 2012).
Most models produced under CMIP5 use GCMs
calibrated from 1850 through 2005. Variability in
the quality of historical climate products can also
be a source of uncertainty when building and
validating models (Baker et al. 2017), so we iden-
tified two sources of temperature and precipita-
tion validation data for comparison. We used the
Daymet dataset (Thornton et al. 2014) as one
comparison source because it provides both
daily temperature and precipitation products.
In climate science, data are broadly categorized
into two classes: observations and reanalyses.
Observational data products, such as Daymet
(Thornton et al. 2014), are solely modeled from
ground-based measurements. On the other hand,
reanalyses are also based on observational data
but constrained by physical climate simulations.
Here, we compared Daymet estimates to the
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European Centre for Medium-Range Weather
Forecasts’ ERA-Interim reanalysis product (Dee
et al. 2011) and CPC observations (Chen et al.
2008), reanalysis data for temperatures and rain-
fall, respectively. Results were nearly identical
from both so we present only validation metrics
from Daymet to obtain daily maximum and min-
imum temperatures and precipitation metrics
from the same data products that are also inde-
pendent of the GCMs themselves. These data are
available at 1 km spatial resolution over North
America from 1980 forward (Thornton et al.
2014) and so our validation period was set to
1980 (when Daymet starts) to 2005 (when CMIP5
GCM hindcasts end). Each GCM uses different
spatial resolutions, and all datasets were harmo-
nized to the coarsest GCM (Appendix S1:
Fig. S2b). To evaluate model performance, we
compared output from the 16 models for the
temperature and precipitation variables to histor-
ical Daymet data during the monarch spring
breeding period, from 22 March to 2 May (Ries
et al. 2015a, Saunders et al. 2016). Our focal
spring region is the entire state of Texas
(Appendix S1: Fig. S1), the extent used for spring
climate covariates in Saunders et al. (2016). We

selected GCMs based on minimizing deviations
comparing Daymet observations to GCM predic-
tions across the study region (Appendix S1:
Fig. S2). We included all models for which the
mean difference between model-simulated and
observed values across all cells in the study
extent during the 26-yr study period was no
more than 1°C and 1 mm (for mean daily tem-
perature and rainfall, respectively) with an esti-
mated residual variance of no more than 2
standard deviations (SD) from the mean. We also
included models that met these criteria for one of
our climate metrics but not both, so long as the
exceeding measure was no more than 2°C or
2 mm and had a measured variance of no more
than 3 SD from the mean in the second variable
(Table 1). We did not pre-specify how many
GCMs should be included in the final ensemble.

Objective 2: Model implementation to create
“trimmed” and “complete” ensemble projections
We selected three of the four future emission

scenarios from the Representative Concentration
Pathways (RCP) presented in the 5th IPCC report
(2014): 2.6, 4.5, and 8.5 and made available to
the modeling community within CMIP5.

Table 1. List of all candidate global climate models (GCMs), and performance metrics used to determine inclu-
sion in our “trimmed” model ensemble.

GCM code
Spatial

resolution Origin

Temperature
deviation
(Model-
Daymet)

Precipitation
deviation
(Model-
Daymet)

Mean SD Mean SD

IPSL 3.7°3 1.8° Institut Pierre-Simon Laplace; France �0.38 2.06 �0.67 0.94
CMCC 0.75°3 0.75° Centro Euro-Mediterraneo sui

Cambiamenti Climatici Climate Model
�0.47 1.22 0.68 0.52

CCCMA 2.8°3 2.8° Canadian Centre for Climate; Canada 2.0 1.62 0.71 0.89
MIROC 1.4° 9 1.4° Atmosphere and Ocean Research Institute; Japan 1.11 1.58 1.1 0.56
BCC 1.1° 9 1.1° Beijing Climate Center; China �1.4 1.65 1.13 0.95
MPI 1.8° 9 1.8° Max Planck Institute for Meteorology; Germany 0.54 2 1.4 0.78
CSIROMK 1.8°3 1.8° Commonwealth Scientific and Industrial Research; Australia �0.72 1.78 1.45 0.83
MRI 1.1° 9 1.1° Meteorological Research Institute; Japan �1.86 1.33 1.8 0.42
CCSM 1.1°3 1.1° National Center for Atmospheric Research; USA �0.55 1.62 1.98 0.95
GFDL 2.5° 9 2.0° Geophysical Fluid Dynamics Laboratory; USA �2.87 1.8 2.28 0.81
NCC 2.5° 9 1.9° Norwegian Climate Centre; Norway �0.77 2.36 2.8 1.35
INM 2° 9 1.5° Institute for Numerical Mathematics; Russia �2.28 2.48 2.82 1.01
CSIROBM 1.8° 9 1.2° Commonwealth Scientific and Industrial Research; Australia 1.31 1.8 2.86 1.35
CNRM 1.4° 9 1.4° Centre National de Recherches Meteorologiques; France �1.68 1.83 3.21 1.33
HadCC 1.8° 9 1.2° Met Office Hadley Centre; UK (Center Coupled model) �1.23 1.71 3.83 1.71
HadESM 1.8° 9 1.2° Met Office Hadley Centre; UK (Earth System Model) �0.15 1.84 3.85 1.75

Notes: Boldface indicates selected models. All models listed are included in the “complete” ensemble.
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Representative Concentration Pathways scenar-
ios describe radiative forcing factors based on
global greenhouse gas emissions that drive mean
global temperatures (Van Vuuren et al. 2011,
Taylor et al. 2012). The most pessimistic “busi-
ness as usual” scenario is RCP 8.5, the projection
if no action is taken to curb growth in emissions.
The other extreme is RCP 2.6, the most optimistic
of the emission scenarios and the one that most
closely resembles the Paris targets (Sanderson
et al. 2016, Jenouvrier et al. 2019). To explore the
potential for nonlinear relationships between
emissions and environmental outcomes, we also
included RCP 4.5, an intermediate scenario.
Some climate scenarios include an additional
intermediate RCP (6.0), but since that was not
available for all 16 GCMs, we did not include it
among our scenarios.

We projected our two key climate variables into
three future periods: early (2018–2038), middle
(2040–2060), and end (2080–2100) of the 21st cen-
tury. To do so, we created daily temperature and
precipitation profiles during the monarch spring
breeding season (22 March—2 May) as defined by
Ries et al. (2015a) for each year of the three future
time periods. For the precipitation profile, we
accumulated spring rainfall (mm); for the temper-
ature profile, we translated projected daily mean
temperatures to GDD values and accumulated
those during spring to develop a GDD profile for
each year. GDD models convert daily temperature
values into metrics relevant to ectothermic organ-
ismal growth rates (Ikemoto and Takai 2000).
Specifically, thresholds are set at a minimum tem-
perature where some growth is evident and a
maximum where growth rates peak. One com-
mon way to calculate GDD is to simply subtract
the lower threshold temperature from each day’s
mean temperature or from the maximum devel-
opmental threshold, whichever is lower. For
example, the lower and upper developmental
thresholds for monarchs are 11.5°C and 33°C,
respectively (Zalucki 1982). Thus, a day with an
average temperature of 21°C adds 10.5°C to the
accumulated GDD for a location (but an average
temperature of 34°C would also add 21.5°C since
33°C is the upper threshold). Ectothermic organ-
isms require a specific number of GDD to reach
each developmental milestone. Monarchs must
accumulate 323 GDDs in order to develop from
an egg to an adult, and this usually occurs over a

period of 3–4 weeks (Zalucki 1982). GDD models
rarely account for temperatures that become so
hot that they inhibit growth, but laboratory stud-
ies show that daytime temperatures that peak
above 38°C begin to have negative impacts on
monarch development (Nail et al. 2015).
We present both trimmed and complete

ensemble projections showing the mean and
annual variability in temperature and precipita-
tion during each of the three time periods for
each emission scenario. Results in Saunders et al.
(2016) and Zylstra et al. (2021) demonstrate that
it is a combination of temperature and precipita-
tion conditions that drives annual monarch pop-
ulation sizes, so we examine the bounding box of
that combination of factors in two-dimensional
space to capture projection variability.

RESULTS

During the model evaluation period (1980–
2005), the overall spatial patterns of temperature
and, to a lesser extent, precipitation generally
matched those projected by models (Figs. 1a, 2a
respectively compared to Figs. 1b–q, 2b–q). The
observed temperatures across Texas showed a lat-
itudinal gradient ranging from ˜28°C in the south
to ˜8°C in the north (Fig. 1a). All 16 GCMs cap-
tured this north-south gradient in temperatures
(Fig. 1b–q), although most temperatures pre-
dicted by the model were cooler (by up to 6°C)
than actual observations (Fig. 1d, e, p, q; Table 1).
In contrast, precipitation followed a more variable
gradient along both latitude and longitudinal
bands with wetter conditions in the east (often
more northeast) and drier conditions in the west
(often further south). Most models also captured
the rainfall gradient (Fig. 2a, but see Fig. 2j).
There were larger discrepancies between observed
and simulated precipitation values compared to
temperature (Fig. 2). Most models over-predicted
precipitation (with rates up to 8 mm/d greater
than in Daymet, as in Fig. 2i), while only one
model under-predicted (with rates up to 2 mm/d
lower than in Daymet, Fig. 2c).
Five out of the 16 candidate models were

selected to generate future climate predictions
for monarch spring breeding in our trimmed
ensemble based on our selection criteria
(Table 1). Although we did not set the number of
GCMs to include in our final ensemble, five is a

 v www.esajournals.org 7 January 2022 v Volume 13(1) v Article e03874

INNOVATIVE VIEWPOINTS NEUPANE ETAL.



number that is consistent with recommendations
for achieving a reasonable balance between
allowing a small number of models to dominate
and swamping out differences between models
by choosing too many (Fordham et al. 2011). To
examine the variability in model performance,

we mapped the differences between observed
and projected metrics across the study region for
all 16 GCMs for both temperature (Appendix S1:
Fig. S3) and precipitation (Appendix S1: Fig. S4).
To demonstrate how both temperature (mea-

sured in GDD) and accumulated precipitation
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20

24

28

32

(a) Daymet

(b) MIROC (f ) CSIRO-MK (j) NCC (n) CCSM4

(c) IPSL (g) CSIRO-BOM (k) CMCC (o) BCC

(e) MRI (i) HadGEM-ESM (m) CCCMA (q) GFDL

(d) INM (h) HadGEM-CC (l) MPI (p) CNRM

Fig. 1. Surface temperature (°C) averaged over 22 March—2 May from 1980 to 2005 from the (a) Daymet
observations, and 16 atmosphere–ocean general circulation models (b)–(r), which are described in Table 1. Con-
tours denote 2°C intervals.
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varied among the 16 models for each evaluation
year (1980–2005), we present those along with
observed values (Fig. 3). Given that our focal
environmental covariates were cumulative over
the season (i.e., both rainfall and GDD are
summed from daily values across the spring

season), there were substantial discrepancies
among model projections that accumulate over
time (Fig. 3) even though the differences were
minor when assessing mean daily values (Figs. 1,
2, Appendix S1: S3, S4). Observed yearly values
(open, black circles in Fig. 3) overlap predicted
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(a) Daymet

(b) MIROC (f ) CSIRO-MK (j) NCC (n) CCSM4

(c) IPSL (g) CSIRO-BOM (k) CMCC (o) BCC

(e) MRI (i) HadGEM-ESM (m) CCCMA (q) GFDL

(d) INM (h) HadGEM-CC (l) MPI (p) CNRM

Fig. 2. Precipitation rate (mm/d) averaged over 22 March—2 May from 1980 to 2005 from the Daymet observa-
tions (a) and 16 atmosphere–ocean general circulation models general circulation models (b)–(r) which are
described in Table 1. Contours denote 1 mm/d intervals.
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values much more from our trimmed ensemble
(colored symbols in Fig. 3) compared to the 11
models that were excluded (gray symbols in
Fig. 3).

Mean projections for temperature and precipi-
tation are similar for trimmed and complete
ensembles across scenarios and timeframes
(Fig. 4), but substantial differences accumulate
through time, especially when uncertainty is
integrated into the projections (Fig. 5). Generally,
mean projected changes were similar between
ensembles, although mean projections from the
complete ensemble tended to show slightly
lower than average temperatures (Fig. 4a–i) and
drier conditions (Fig. 4j–r) compared to the
trimmed ensemble. Our trimmed ensemble pre-
dicted that temperatures will become, on aver-
age, warmer (by 1–6°C) across Texas, depending
on the scenario and projection period (Fig. 4a–i).
However, the most substantial increase in projec-
tions was isolated to the late 21st century under
the most extreme (RCP 8.5) scenario (Fig. 4i).
Predicted changes in precipitation patterns were
minor, but indicated slightly wetter futures in the
near-term and the middle of the 21st century
under mild and moderate emission scenarios.

However, under the extreme emission scenario,
minor drying occurred in the near-term and mid-
dle of the century (Fig. 4j–o). Later in the century,
a stronger gradient is projected to develop, with
wetter conditions in the northeast portion of
Texas and drier conditions in the southwest
(Fig. 4p–r). While average projections across
Texas were roughly similar for trimmed and
complete ensembles (Fig. 4), the projected uncer-
tainty was substantially greater using the com-
plete ensemble when compared to our trimmed
ensemble (Fig. 5).

DISCUSSION

Projecting the climatic conditions that develop-
ing monarch larvae may experience in their cur-
rent spring breeding range over the next several
decades rests on several assumptions. These
include the specific emission scenarios consid-
ered and the appropriateness of the underlying
climate model structure used to make those pro-
jections. By considering the full spectrum of glo-
bal climate emission scenarios, using both
complete and trimmed GCM ensembles, we
identified a range of potential outcomes relative
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Fig. 3. Average springtime GDD (°C) and precipitation (mm) in Texas from 1980 to 2005 estimated by Daymet
(open, black circles) and for 16 GCMs. Five selected GCMs (CCCMA, CSIROMK, CCSM, CMCC, and IPSL) are
displayed in colored symbols, excluded GCMs are in gray. Inset also displays 1980–2005 observed GDD and pre-
cipitation (Daymet), the cross hairs indicate the 26-yr mean for GDD and precipitation. The oval shaded region
encloses the climate space where the year-specific predictive accuracy of monarch counts in Illinois is high, based
on Saunders et al. (2016). A box duplicating the bounding box of the inset is also shown on the main figure for
reference.
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to future developmental conditions for monarch
larvae during the critical spring breeding phase
of their annual migratory cycle (Appendix S1:
Fig. S1). As expected, the average for both
trimmed and complete-model outcomes showed
a gradual and similar increase in overall mean
temperature and an increased variability in

precipitation, with the pessimistic RCP 8.5
“business-as-usual” scenario causing the most
extreme changes by the end of the century
(Fig. 4). Yet presenting uncertainty estimates
around the overall means paints a much starker
picture of differences between projections emerg-
ing from the complete and trimmed ensembles
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Fig. 4. Predictions for changes in mean springtime surface temperature (a–i) in °C and mean springtime pre-
cipitation (j–r) in mm/d for different project periods (rows). Results are shown for different emission scenarios
(columns) and also with “trimmed” (5-model) and “complete” (16-model) side-by-side for comparison (left side
and right side, respectively).
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(Fig. 5). The complete (16-model) ensemble pro-
duced a range of projected uncertainty so expan-
sive that it is impossible to predict whether the
climate will generally be too cold or too hot at
the end of the century for spring development
(Fig. 5f). In contrast, the ensemble of the five
best-performing models projected distinct differ-
ences at the end of the century between the three

emission scenarios (Fig. 5e), but not in earlier
time periods (Fig. 5a, c). Only in the trimmed set
of models did we demonstrate a clear divergence
of predicted outcomes, whereas in the complete
ensemble, no obvious trends were predicted,
only increased variability (Fig. 5f).
Our findings are similar to that of Cavanagh

et al. (2017), who demonstrated that a trimmed
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Fig. 5. Mean (cross-hairs) � 2 SD (colored boxes) of projected GDD and precipitation in Texas’s spring in the
near future (2018–2038), mid-21st century (2040–2060), and end-21st century (2080–2100). Variability in projec-
tions are based on global warming simulations under RCP2.6 (blue box), RCP4.5 (green box), and RCP8.5 (red
box) scenarios from selected 5-model ensemble (panel left) and complete 16-model ensemble (panel right). In
each panel, the black box shows bounds the same conditions as the inset box in Fig. 3 (indicating range of 1980–
2005 conditions). The oval from Fig. 3 is also reproduced and indicates the range of mean GDD (°C) and total
precipitation (mm) in Texas springs that had the highest predictive accuracy of monarch population size in their
summer breeding grounds based on Saunders et al. (2016).
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and complete ensemble of future projections of
Antarctic sea ice extent showed similar means,
but vastly different ranges of uncertainty. The
authors concluded that any ecological application
of their predictions may only be meaningful when
considering a trimmed set of models. However,
trimming GCMs may elicit concerns about
“cherry picking” results or attempting to proac-
tively minimize uncertainty. In confronting these
concerns, future approaches could follow a path
in between those two extremes. One straightfor-
ward approach would be to simply present results
from multiple approaches to ensemble building
(e.g., complete vs. trimmed) as we do here. Until
relatively recently, few ensemble models have
been implemented in ecological studies due, in
part, to computational constraints (Lutz et al.
2016). With ever-increasing computational capac-
ity, multiple approaches of building ensembles are
more attainable, and the presentation of multiple
modeling scenarios promotes a more transparent,
reproducible approach to scientific investigation.

Currently, we are able to accurately predict
summer monarch population sizes only for
springs that would be considered “typical” in
our modern climate (Saunders et al. 2016, illus-
trated by the oval insets in Figs. 3, 5), which indi-
cates nonstationarity in model projections.
Despite the challenges of projecting specific mon-
arch population sizes, mechanistic studies of
monarchs allow us to consider the potential con-
sequences based solely on our knowledge of
their measured physiological responses to a
range of temperature conditions. For instance,
we showed that under the RCP 8.5 “business-as-
usual” emission scenario, spring growing condi-
tions could get substantially warmer and, in
some years, could provide enough energy to
allow two broods to develop during a moder-
ately expanded spring season. This is because a
monarch egg requires 323 of accumulated GDD
to develop into an adult (and so 646 GDD to pro-
duce two broods); projections from the trimmed
ensemble suggest some spring breeding win-
dows could provide up to 600 GDD (Fig. 5e). To
date, the hottest spring temperatures have not
been associated with larger summer population
sizes, on average (Saunders et al. 2016, 2018), but
there has also been no historical analog to a year
in which two generations could be produced
during a single spring breeding season.

Although the possibility of two generations in
spring is purely speculative, if it were to occur, it
could substantially increase spring recruitment
and, subsequently, could lead to larger peak
summer population sizes. Previous work has
shown that summer monarch population sizes
are primarily driven by spring conditions (Saun-
ders et al. 2016, 2018) and that there is a correla-
tion between spring population size and summer
population growth (Ries et al. 2015a, Inamine
et al. 2016). Alternatively, increased spring tem-
peratures could have negative impacts on larval
development. Larval mortality rates can increase
when daytime temperatures reach highs of 38°C
(Nail et al. 2015), which will become more com-
mon at the end of the century, even during
spring, according to our trimmed ensemble
(Fig. 6). Of course, this neglects the potential for
monarchs to shift their spring distribution or
migratory timing to match ideal temperatures.
However, this would also require an associated
shift in their hostplant distribution and phenol-
ogy, so future considerations of monarch adapta-
tion to climate should consider future projections
of their interacting species as well (Wisz et al.
2013). This highlights the complexities of consid-
ering future conditions, but also provides a
framework to explore those in subsequent
research.
For this study, we did not project future sum-

mer conditions in the Midwest because currently
there is a lack of evidence indicating that sum-
mer climate conditions have a strong impact on
monarch population growth (Saunders et al.
2016, 2018), although the hottest summers at the
hottest sites in the Midwest showed a slight
decline in local populations (Zipkin et al. 2012).
However, the models that were used only
include data through 2015 and 2015–2019 had
many of the hottest years on record for global
temperatures (Dunn et al. 2020). Indeed, recent
work that included data through 2018 (Zylstra
et al. 2021) indicated an increasing, but still sec-
ondary, impact of summer temperatures on mon-
arch populations, suggesting that the influence
of summer conditions may continue to grow in
the future. An active, growing network of public
scientists continues to monitor monarchs annu-
ally (Ries and Oberhauser 2015), which will facil-
itate model development and improvement
(Dietze et al. 2018). As climate continues to
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change, we can iteratively expand the range of
spring and summer climate conditions for which
we can achieve reasonable model performance,
better characterize nonlinear dynamics and thus
more confidently make projections and account
for nonstationarity. Further, other factors can be
equally or even more important than climate;
ideally, these additional conditions should also
be factored into future scenarios and estimates of
uncertainty (Sohl 2014). For monarch dynamics
specifically, these would include factors such as
milkweed availability and pesticide use (Thog-
martin et al. 2017) but the most important factors
are likely to change over time (Saunders et al.
2018, Zylstra et al. 2021). Despite these caveats,
forecasts from our trimmed GCM ensemble are
valuable in identifying the most realistic range of
physiological outcomes for monarchs in spring,
given our current knowledge. Based on projec-
tions from our trimmed ensemble, we suggest
that monarchs may be able to produce up to two
generations during their normal spring migra-
tion period by the end of the century under the
most pessimistic emissions scenario (Fig. 5), but
they may also be subject to adverse temperatures
(Fig. 6) which could substantially limit their pop-
ulation growth in some years or push them fur-
ther north during spring.

The recent trend toward including an increas-
ingly large number of GCMs in ensemble predic-
tions is reasonable when there is little
mechanistic basis for projecting particular

environmental conditions (Braunisch et al. 2013),
but it may also limit our ability to interpret the
results (Cavanagh et al. 2017). When ecological
models can be informed by mechanism and there
is empirical evidence to support those mecha-
nisms, as is true for the monarch butterfly, then
trimming the number of GCMs in the ensemble
used to make projections can help exclude exces-
sive uncertainty by focusing on key environmen-
tal forecasts that have the most support.
Ecological forecasts are essential to inform the
public and decision-makers, but it is also impera-
tive that we are able to interpret those projec-
tions, or they lack utility. Many modeling
decisions impact our ability to account for multi-
ple sources of uncertainty and influence the
meaning of those projections (Zylstra and Zipkin
2021). As highlighted by many other authors
(e.g., Ara�ujo and New 2007, Braunisch et al.
2013, Sohl 2014, Cavanagh et al. 2017, Yates et al.
2018), these trade-offs between uncertainty and
interpretability call for clear communication
about modeling choices and how those decisions
impact the interpretation of downstream results.
Here, we provide an evidence-based approach
for building GCM ensembles, while accounting
for nonstationarity. We also demonstrate how
these forecasts can inform our thinking about
future environmental conditions despite consid-
erable sources of uncertainty using a well-
studied, long-distance migrant that sparks
considerable public interest. Continually shaping

(a) Historical (b) Early 21C (c) Mid 21C (d) End 21C 

1 2 6 10 14 18 22 26

Fig. 6. Number of days with daily maximum temperatures greater than 38°C in spring (22 March–2 May) from
CCCMA historical (1980–2005), and RCP8.5 global warming scenarios in early (2019–2038), middle (2040–2060),
and end (2080–2100) of the 21st century.
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such approaches for other species and systems
will help advance ecological and evolutionary
research in the face of rapid global change.
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