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ABSTRACT

Aim Forecasting ecological responses to climate change is a common objective,

but there are few methods for evaluating confidence in such predictions. For

migratory species, in particular, it is also essential to consider the extent of

spatial synchrony among separate breeding populations in range-wide

predictions. We develop a quantitative method to evaluate the accuracy of

climate-based ecological predictions and use this approach to assess the extent

of spatio-temporal synchrony among distinct regions within the breeding range

of a single migratory population.

Location We model weekly site-specific summer abundances (1996–2011) of

monarch butterflies (Danaus plexippus) in the Midwestern USA as a function

of climate conditions experienced during a shared spring migration/breeding

phase in Texas and separate summer recruitment periods in Ohio and Illinois.

Methods Using negative binomial regression models, we evaluate spatio-

temporal synchrony between monarchs in the two states and develop a novel

quantitative assessment approach to determine the temporal predictive strength

of our model with Bayesian P-values.

Results Monarchs breeding in the Midwest exhibit spatio-temporal synchrony

in Ohio and Illinois; cooler spring temperatures, average to above average

precipitation in Texas and cooler than average summer temperatures are

associated with higher population abundances in both states. At least 10 years

of data are needed for adequate model predictability of average future counts.

Because annual spring weather conditions in Texas primarily drive yearly

abundances, as opposed to localized summer effects, year-specific counts are

often difficult to predict reliably, specifically when predictive spring conditions

are outside the range of typical regional conditions.

Main conclusions Our assessment method can be used in similar analyses to

more confidently interpret ecological responses to climate change. Our results

demonstrate the relative importance of climatic drivers in predicting

abundances of a migratory species and the difficulties in producing reliable

predictions of animal populations in the face of climate change.
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INTRODUCTION

As environmental and climate conditions change, forecasting

future distributions of species (Brooker et al., 2007; Mustin

et al., 2009; Kubisch et al., 2013), population sizes (Roy

et al., 2001; Huntley et al., 2010) and changes in range-wide

habitat suitability (Brotons et al., 2004) are vitally important

for the development of effective conservation strategies via

proactive preservation and restoration measures. One com-

mon approach to predicting the potential effects of climate

change employs statistical models, which use empirical data

to define relationships between current species distributions/

abundances and environmental drivers (Iverson & Prasad,

2001). The environment (e.g. covariate values) is then

‘changed’ according to expert opinion and/or model-based

projections of land use or climate change (i.e. forecasting

models; Berteaux et al., 2006), and the statistical relationships

are extrapolated forward to define new possible species distri-

butions and abundances (e.g. Roy et al., 2001; Acevedo et al.,

2010; Stewart et al., 2015). Commonly employed statistical

models for this purpose include general linear models, gen-

eral additive models, regression tree models and multivariate

adaptive regression splines (Iverson & Prasad, 2001).

This method of prediction from observational studies

assumes that the climatic relationships demonstrated during

a given study period will hold true under future conditions.

Yet this assumption is rarely tested (Berteaux et al., 2006;

Raffa et al., 2008; Jamieson et al., 2012; Kerr & Dobrowski,

2013). Model validation for such analyses frequently involves

omitting a random subset of data and assessing the accuracy

of predicted omitted values. Typically, these predictions occur

over the same time period and spatial extent as the data that

are included in the model (i.e. semi-independent model vali-

dation; Lawler et al., 2009), leading to problems of temporal

and spatial autocorrelation in the calibration and validation

sets (Ara�ujo et al., 2005). Population-level predictions under

future climate scenarios commonly occur outside the

observed parameter space from which measurements are

available. Little guidance exists on how to evaluate confi-

dence in these predictions from statistical models (Berteaux

et al., 2006; Kerr & Dobrowski, 2013), even as models to

evaluate the impacts of climate change predictions become

ever more sophisticated (Lawler et al., 2009). Thus, predic-

tions from such studies are prone to over-interpretation

(Ehrl�en & Morris, 2015), given that ecological processes may

be responding to climate at finer temporal scales than that of

the study period or altogether dissimilarly in ecologically and

geographically distinct areas. Finally, future climate condi-

tions may be outside the range for which data are available

and thus parameter estimates on climate covariates may not

characterize future conditions well. Establishing a level of

confidence for these types of predictions is an essential next

step in understanding the climatic drivers of population

dynamics and distributions.

Predicting the impacts of climate change on migratory

species is especially complicated, given that they travel

through several climates that change differentially throughout

their migratory range. Understanding how seasonal interac-

tions (e.g. carry-over effects, environmental changes) affect

distinct populations of a migratory species can reveal the

extent of migratory connectivity across a region (Norris &

Marra, 2007; Pasinelli et al., 2011), and consequently help

predict the impacts of climate change. Migratory insects in

particular are expected to be substantially affected by climate

change because they are responsive to temperature and have

relatively short life cycles and high reproductive capacity

(Stange & Ayres, 2010). Yet few long-term studies have inves-

tigated the effects of present and future climate on migratory

insects, typically due to difficulties in defining appropriate

fine-scale spatio-temporal climate metrics (but see Olfert

et al., 2011; Zipkin et al., 2012). Furthermore, many migra-

tory insect species have a wide geographical extent, but inves-

tigations of spatial synchrony among populations in response

to climate conditions are rare. This is most likely due to

sparse spatial data collected concurrently over a multi-year

period (with the exception of insect outbreak studies; e.g.

Williams & Liebhold, 2000). Thus, it is difficult to establish

whether responses measured in a particular study area are

applicable throughout a species’ range.

The monarch butterfly (Danaus plexippus) is an ideal focal

species for analyzing current and predicting future climate

responses; it has a broad migratory range and the available

monitoring data encompass a wide spatial and temporal

extent (Ries et al., 2015). Climate (e.g. temperature, precipi-

tation) directly affects monarch juvenile development

(Zalucki, 1982; York & Oberhauser, 2002; Couture et al.,

2015; Nail et al., 2015), adult survival (Alonso-Mejia &

Arellano-Guillermo, 1992) and reproduction (Barker & Her-

man, 1976). Monarchs are also affected indirectly by climatic

impacts on the growth and vitality of their host plants

(Zalucki et al., 2004). Couture et al. (2015) demonstrated

that elevated temperatures and periodic water stress affected

the growth of common milkweed (Asclepias syriaca) and per-

formance of monarch larvae, and York & Oberhauser (2002)

and Nail et al. (2015) documented both lethal and sublethal

effects of extreme temperatures on larvae. Additionally, an

increase in extreme weather events (with lethal conditions for

monarch survival) due to climate change has been suggested

as a significant factor affecting the future viability of present-

day overwintering sites in central Mexico (Barve et al., 2012).

Therefore, climate is an important driver of annual fluctua-

tions in monarch population dynamics, albeit a complex fac-

tor, given the geographical extent of their migratory range.

This study uses long-term (1996–2011) monarch data

from two independent state-wide monitoring programs in

Ohio and Illinois to examine how climate conditions experi-

enced during a shared spring migration/breeding phase in

Texas, as well as during subsequent arrival and summer

breeding in separate recruitment areas, explain variation in

year-to-year fluctuations in abundance on monarch summer

breeding grounds. We outline a novel quantitative assessment

method, employing Bayesian P-values (a goodness of fit
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metric), to evaluate confidence in population-level predic-

tions of expected counts, using a subset of the survey data to

generate predictions and then testing those predictions using

actual observed weather conditions in other years. Our

method considers both data availability and model structure,

allowing for a more rigorous evaluation of predictive ability,

both spatially and temporally. More specifically, by compar-

ing climate impacts on breeding monarch butterflies in dif-

ferent portions of their breeding range over a 16-year period,

we determine: (1) how confidently we can extrapolate results

from one study region to another by examining spatial syn-

chrony in results from two independent datasets, and (2)

how confidently we can extrapolate predictions to future cli-

mate conditions, especially if climate projections are outside

the parameter region for which data are available. Our assess-

ment method can be used in similar analyses to: (1) under-

stand the predictive limitations of a given dataset and

regression model, and (2) determine a level of confidence

when interpreting the ecological responses of a population to

a changing climate.

METHODS

Focal species

We focus on the eastern migratory monarch population, the

larger of two nearly separate populations in North America

(Brower, 1986; Pyle, 2015). The eastern migratory population

extends from the east coast to the Rocky Mountains during

its summer breeding phase and overwinters in dense forest

colonies at the boundary of the Mexican states of Michoac�an

and M�exico (Brower, 1986). Spring migrants move into Texas

and surrounding areas by mid March (Cockrell et al., 1993;

Malcolm & Zalucki, 1993) and lay eggs on host plants in the

subfamily Asclepiadoidae (milkweeds), which are found

throughout much of North America. The eggs laid by the

spring migrants are that year’s first generation, which subse-

quently colonizes more northerly areas of eastern North

America beginning in early May. Throughout the remainder

of the summer, the population grows by an additional two

or three generations, with the bulk of recruitment occurring

in the Midwestern United States (Wassenaar & Hobson,

1998). The final generation, which migrates to Mexico, varies

substantially in size each year (Pleasants & Oberhauser,

2013); the causes of such fluctuations are not well under-

stood, although climate (Zalucki et al., 2004; Zipkin et al.,

2012) and habitat availability (Pleasants & Oberhauser, 2013)

are contributing factors. Beginning in mid August, monarchs

enter reproductive diapause and start to move southward,

with most flying to the Mexican overwintering sites (Brower,

1986).

Monarch data collection

Our analysis used state-wide butterfly monitoring data col-

lected in Ohio and Illinois. Both states have a well-

established network of volunteers who surveyed consistently

during the study period and are within the main area of

monarch recruitment. The Ohio program was initiated in

1995 by the Ohio Lepidopterist Society, and we included

data collected at 116 locations from 1996 to 2011

(n 5 13,038 surveys). The annual number of survey locations

varied between 13 (1996) and 60 (2003), and the mean num-

ber of surveys conducted per site was 129 6 89 (SD; range 6–

369). Locations were dispersed throughout the state (Fig. 1),

and several kilometers usually separated the closest sites

(with none closer than 1 km). Although the Illinois monitor-

ing program began collecting data in 1987, our analysis used

data from 1996–2011 to allow direct comparison with Ohio.

The Illinois program also manages sites in Indiana (close to

the Illinois border; Fig. 1), which we included in our analy-

ses. The annual number of survey locations in Illinois varied

annually between 29 (1996) and 94 (2005), and the mean

number of surveys conducted per site was 53 6 28 (range

20–129). We excluded under-surveyed locations (i.e. surveyed

on fewer than 20 occasions between 1996 and 2011; 12% of

survey data), yielding a total of 133 locations for analysis

(Fig. 1; n 5 6,506 surveys). Locations were dispersed

throughout northern and central Illinois, with the majority

of sites occurring within 160 km of Chicago; all sites were at

least 1 km apart. In both states, each location was surveyed

by a volunteer who visited his or her assigned location up to

once weekly during the peak study period (June through

August), but not all locations were surveyed every week or

during every year. At each survey point, the observer walked

a fixed transect of variable length and recorded all butterflies

(not just monarchs) seen within approximately 5 m (Pollard,

1977). Transect lengths varied between sites, but remained

fixed at sites from year to year. Observers recorded the time

spent on each survey to account for variable transect lengths

and monitoring effort.

Data summary and analyses

Our analysis examined the impacts of climate experienced by

the first generation of monarchs in Texas and during summer

recruitment phases in Ohio and Illinois (subsequent genera-

tions). We sequentially numbered each week in the season,

beginning with the migration from Mexico that occurs in the

beginning of March; thus, week 1 begins on 1 March. Spring

breeding in Texas occurs between the last week in March up

to the end of April (weeks 4–9; Prysby & Oberhauser, 2004).

Emerging adults in the spring then arrive in the Midwest

(e.g. Ohio and Illinois) by the first week in May (week 10;

Howard & Davis, 2004), and increase in abundance during

mid June to mid July (weeks 15–20; Prysby & Oberhauser,

2004). Population growth continues through to the beginning

of September (week 28; Brower, 1986; Prysby & Oberhauser,

2004).

Climate data

The influence of temperature on monarch abundances was

quantified via growing degree days (GDD), which measure

Assessing climate impact predictions
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the accumulation of the number of degrees that contribute

to development (McMaster & Wilhelm, 1997). GDD models

assume a minimum temperature (11.5 8C for monarchs)

below which a species cannot develop and a maximum tem-

perature (33 8C) beyond which growth no longer occurs

(Zalucki, 1982). For monarchs, a total of 352 GDDs are, on

average, required for an egg to develop into an adult

(Zalucki, 1982). GDDs are calculated by summing the total

GDD accumulated each day using the mean of that day’s

high (up to a maximum of 33 8C) and low temperatures

(Baskerville & Emin, 1969). We acquired daily minimum and

maximum temperatures throughout Texas (weeks 4–9), Ohio

(weeks 10–28) and Illinois (weeks 10–28) from 1996 to 2011

from Daymet, a collection of algorithms designed to interpo-

late values from daily meteorological observations to produce

spatially gridded estimates of daily weather patterns (Thorn-

ton et al., 2014). For Texas, we used the values of daily mini-

mum and maximum temperature during weeks 4–9 in a grid

of 18 points spread evenly throughout the state (also derived

from Daymet products), and averaged values across the

entire state to yield a single GDD spring value for each year.

In Ohio and Illinois, we acquired Daymet site-specific tem-

perature values at each survey location (at a 1-km resolution)

and accumulated daily GDDs from week 10 up to the week

in which each survey was conducted.

To assess the influence of drought on monarch population

dynamics, we used the Palmer drought index (PDI), which

integrates precipitation, temperature and soil moisture

throughout the season. Although this metric can be con-

founded with temperature (Hu & Wilson, 2000), it is a more

biologically meaningful measure than rainfall alone (Heim,

2002), and has been used in previous studies of monarchs

(Stevens & Frey, 2010; Zipkin et al., 2012). We obtained val-

ues from the National Oceanic and Atmospheric

Figure 1 Monarch survey locations in Illinois (left; n 5 133) and Ohio (right; n 5 116) for 1996–2011. Delineations shown within each

state represent the nine NOAA-defined climate divisions in Illinois and ten divisions in Ohio. Locations shown in Indiana (center) are

part of the Illinois monitoring program.

S. P. Saunders et al.
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Administration (NOAA) Climate Data Center (ftp://ftp.cpc.

ncep.noaa.gov/htdocs/temp2) for each of the 10 NOAA-

defined climate divisions in Ohio and 10 divisions in Illinois

(including one division in Indiana; Fig. 1). To account for

accumulated rainfall at each survey location in Ohio and Illi-

nois, we used the PDI calculated for weeks 10 to 28 within

each climate division (Zipkin et al., 2012). However, because

there was a strong correlation between GDD and PDI in

Texas, we opted to use mean rainfall (which was only weakly

correlated with GDD) to account for yearly precipitation pat-

terns in Texas only. We used annual state-wide summaries of

total monthly rainfall for February, March and April from

NOAA’s Climate at a Glance (http://www.ncdc.noaa.gov/cag)

to correlate with the growing season of milkweed.

Habitat suitability data

As a measure of site-specific habitat availability at Ohio and

Illinois locations, we included a variable (openj) to account for

the proportion of area along the given transect j that was

unforested. Because milkweed commonly grows in open areas,

the inclusion of this covariate controls for variation in abun-

dance that is due to habitat suitability (milkweed availability)

at a given survey site. We calculated openj using national land-

cover data for 2006 (http://www.mrlc.gov/nlcd06_data.php) at

a 30-m resolution. We classified habitat categories as open or

closed, and then calculated the percentage of pixels represent-

ing open habitat within a 1-km radius of each site.

Data analysis

To evaluate spatial synchrony among monarch populations,

we used a negative binomial regression model to estimate

expected monarch counts (kj,k,t) at each survey site (j) within

Ohio and Illinois during the summer breeding season by

week (denoted as k) in each year (t), according to spring and

summer climate metrics. Poisson generalized linear models

are typically used in analyses of count data, but the assump-

tion of equal mean and variance is quite restrictive, as there

can be large variation in numbers of observed individuals.

For the monarch surveys used in this analysis, a high var-

iance to mean ratio is likely due to differences in habitat

suitability across locations [2.1 6 6.6 (SD) monarchs at Ohio

sites; 5.0 6 11.7 monarchs at Illinois sites]. Because of this

overdispersion, the negative binomial distribution produced

a better fit to the data than the Poisson distribution. Thus,

the count at site j in week k during year t was defined as:

yj ;k;t � neg binom pj ;k;t ; r
� �

(1)

with mean

kj;k;t 5
pj:k:t r

12r
(2)

and variance

r2
j:k:t 5

pj:k:t r

ð12rÞ2
(3)

Our model estimated the expected counts during weeks 10–

28 (the first week of May to the first week of September) of

the summer breeding season using climate variables from

both spring (weeks 4–9) in Texas and summer in Ohio and

Illinois. We conducted separate analyses for Ohio and Illinois

to compare the similarity of results at the regional scale.

Summer populations in Ohio and Illinois experience the

same spring conditions in Texas and summer breeding occurs

within similar ecoregions, each experiencing a similar range

of land-use practices. Thus, we hypothesized that climate var-

iables would be likely to influence monarchs similarly across

the two states, and expected strong synchrony and agreement

in model parameters. We modelled expected monarch

counts, kj,k,t, at each survey location j (n 5 116 in Ohio,

n 5 133 in Illinois) in week k (10–28) within year t (1996–

2011) on the log scale using an intercept term (a1) and 16

parameters (a2–a17) that we hypothesized could affect counts

by site (j), week (k) and year (t) (Table 1; Zipkin et al.,

2012). All covariates were standardized such that each had a

mean of zero and standard deviation of one (note that stand-

ardization was done separately for the Ohio and Illinois

datasets).

As in Zipkin et al. (2012), we included a week covariate

(a2, linear term) because local monarch abundances increase

over the course of the summer. Parameters a3–a8 (Table 1)

relate to spring conditions in Texas, including linear and

quadratic terms (a3 and a4) for spring precipitation

(spPRECt), and linear and quadratic terms (a5 and a6) for

spring GDD (spGDDt). We included interaction terms of

spring precipitation/GDD and week (a7 and a8) because we

hypothesized that spring conditions in Texas may affect mon-

arch abundances in Ohio and Illinois differently throughout

the summer.

Parameters a9–a13 (Table 1) relate to the accumulating

GDDs at each survey site j. Since GDD increases throughout

the spring and summer, we used the difference from the

mean GDD (GDDdiffj,k,t) at a given site j across all 16 years

to capture whether the GDDs accumulated by the end of

each week of the survey were above or below average for that

site during the time period of data collection (a9). Average

GDD (avgGDDj) is the average accumulated GDD in week

28 (end of the summer) at site j across all 16 years. Average

GDD serves as a proxy for location (rather than latitude and

longitude) because it captures a biologically relevant relation-

ship: the influence of relatively warmer or cooler sites on

monarch abundances at the end of the season. The covariate

also allows for the direct comparison between Ohio and Illi-

nois because site-specific latitudes and longitudes are not

used to explain any of the variation in expected counts. We

included linear and quadratic terms for avgGDDj (a10 and

a11). We included an interaction term (a12) between

GDDdiffj,k,t and week, as well as a three-way interaction

between avgGDDj, GDDdiffj,k,t and week (a13). The PDIj,t

covariate is the annual value of the drought index at each

survey location averaged for weeks 10–28; we included linear
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(a14) and quadratic (a15) terms, and an interaction with

week (a16; Table 1). Parameter a17 (openj; Table 1) is

location-specific habitat availability (i.e. milkweed grows in

open areas). We controlled for variable survey durations and

transect lengths using a log(effortj,k,t) covariate, where effort

was standardized by survey hours.

We build on a previous analysis (Zipkin et al., 2012) that

assessed the impacts of climate on monarchs breeding in

Ohio during 1996 to 2008. In that model, Zipkin et al.

(2012) estimated monarch abundances using site-specific

summer temperature data and drought indices, as well as

spring weather conditions (temperature, precipitation) expe-

rienced by monarchs during their stopover in Texas. We

defined climate variables similarly, but our implementation

differed in four main ways. First, we used a negative bino-

mial distribution, rather than a Poisson distribution, which

allowed us to model overdispersion in the counts. Second,

we used daily mean minimum and maximum temperatures

obtained via the recently developed Daymet algorithms, a

dataset of daily surface weather and climatological summaries

at a 1 km 3 1 km spatial resolution (Thornton et al., 2014).

Given the fine-scale resolution of these data, the tempera-

tures we used are a more accurate representation of the accu-

mulated number of degrees that can contribute to monarch

development. Third, we incorporated three additional years

of Ohio monarch surveys, as well as data from Illinois during

the same time period, thus capturing more variation in end-

of-summer abundances. Fourth, our spring precipitation val-

ues were updated by NOAA.

We analysed models for Ohio and Illinois separately and

estimated parameter values using a Bayesian framework

with programs R and JAGS (using the R package jagsUI;

Kellner, 2015). We ran three chains for 4000 iterations

after a burn-in of 1000 iterations and thinned the chains

by three assuming flat normal priors on each of the 17

covariates. Model convergence was assessed using the Rhat

statistic (Gelman & Hill, 2006) and visual inspection of

chains.

Assessment of model fit and predictive ability

We assessed model fit by calculating a Bayesian P-value, or

posterior predictive check, using a discrepancy measure

(K�ery, 2010). A posterior predictive check compares the fit

of the model for the actual dataset with the fit to replicated

‘ideal’ datasets as generated for each Markov chain Monte

Carlo (MCMC) iteration using the parameter estimates. The

‘ideal’ datasets conform perfectly to model assumptions

(K�ery, 2010). Thus, if the model fits the data well, then

replicated data generated under the model should look sim-

ilar to observed data. A discrepancy measure is computed

for both the actual and ideal datasets at every iteration of

the MCMC run. A Bayesian P-value quantifies the propor-

tion of MCMC iterations when the discrepancy measure for

the ideal dataset is greater than the discrepancy measure

computed for the actual dataset. A model that fits the data

well has a P-value near 0.5, indicating that the model is not

consistently under-predicting (P-value near 0) or over-

predicting (P-value near 1) counts at sites. We consider P-

values in the range 0.3 to 0.7 to be adequate for model fit

(K�ery, 2010). As is typical for negative binomial models, we

Table 1 Descriptions of parameters used in negative binomial regression models to estimate weekly expected monarch abundances at

Ohio and Illinois survey locations from 1996 to 2011.

Parameter Covariate Description

a1 NA Intercept

a2 weekk Week in breeding season

a3 spPRECt Spring precipitation in Texas (linear)

a4 spPRECt
2 Spring precipitation in Texas (squared)

a5 spGDDt Spring GDD in Texas (linear)

a6 spGDDt
2 Spring GDD in Texas (squared)

a7 spPRECt 3 weekk Spring precipitation and week interaction

a8 spGDDt 3 weekk Spring GDD and week interaction

a9 GDDdiffj,k,t Weekly GDD differential at transects in Ohio and Illinois

a10 avgGDDj Average cumulative GDD at transects in Ohio and Illinois (linear)

a11 avgGDDj
2 Average cumulative GDD at transects in Ohio and Illinois (squared)

a12 GDDdiffj,k,t 3 weekk GDD differential and week interaction

a13 GDDdiffj,k,t 3 avgGDDj 3 weekk GDD differential, average GDD, and week interaction

a14 PDIj,t Annual PDI (weeks 10–28) at sites in Ohio and Illinois (linear)

a15 PDIj,t
2 Annual PDI (weeks 10–28) at sites in Ohio and Illinois (squared)

a16 PDIj,t 3 weekk Annual PDI and week interaction

a17 openj Proportion of unforested habitat at transects in Ohio and Illinois

The subscripts represent transect location (j), week within season (k), and survey year (t).

GDD, growing degree days; PDI, Palmer drought index.
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defined the discrepancy measure as the sum of squared

Pearson’s residuals:

X nj;k;t 2E½nj;k;t �
r2

j;k;t

 !2

(4)

where nj;k;t is the observed count by site (j), week (k) and

year (t), E nj;k;t

� �
is the expected count per site, week and

year, and r2
j;k;t is the variance of the expected count.

To explore the predictive abilities of our model, we modi-

fied the Bayesian posterior predictive check to quantitatively

assess the temporal predictive strength of our model. First,

we partitioned the Ohio and Illinois data into subsets based

on 8 (1996–2003), 10 (1996–2005), 12 (1996–2007) and 14

(1996–2009) years of data. Next, we used the parameter esti-

mates from each of those four runs to predict expected end-

of-summer counts (week 28) based on the subsequent year’s

spring and summer conditions (i.e. covariate values not used

during parameter estimation). For example, we used parame-

ter estimates from the 1996–2003 model run to predict the

mean monarch abundance per site expected during week 28

in Ohio and Illinois under actual spring and summer condi-

tions (temperature and precipitation) experienced during

each year from 2004 to 2011. We then compared each year’s

expected count per site during week 28, from all 3000 itera-

tions, with observed counts (i.e. the ‘ideal’ dataset) using the

posterior predictive check method to assess whether the

model was overestimating or underestimating counts on

average and in each year.

Lastly, to more thoroughly assess year-specific predictive

ability, we separately divided the Ohio and Illinois datasets

into 16 different 15-year subsets (i.e. each dataset excluded

exactly 1 year of data from 1996 to 2011). We then used the

parameter estimates from each of the 16 model runs to pre-

dict the omitted year’s expected end-of-summer count based

on that year’s spring and summer conditions (e.g. we used

parameter estimates from the 1997–2011 model run to pre-

dict expected end-of-summer count during 1996 with covari-

ate values observed in 1996). This procedure allowed us to

utilize all available data to determine how confidently we

could predict annual peak monarch counts under the best

circumstances when climate conditions are known. The

BUGS code for the negative binomial regression model and

the discrepancy assessment procedure (for an example 8-year

subset) are provided in Appendix S1 in Supporting

Information.

RESULTS

Adult monarch counts in Ohio and Illinois exhibited strong

spatial synchrony. Spring weather conditions (parameters a3–

a8) in Texas had a greater influence on summer abundances

in both Ohio and Illinois than local summer conditions

(parameters a9–a16; Fig. 2a, b). Specifically, cooler, wetter

springs led to higher end-of-summer abundances in both

locations (Fig. 2a, b, parameters a3 spPRECt and a5 spGDDt;

Fig. 3a, b). In Illinois, warmer springs also tended to yield

slightly higher average abundances (Fig. 3b); this trend was

not apparent in Ohio. The magnitude of the effect of spring

temperature on summer abundances was greater than that of

spring precipitation in both locations.

Monarchs in Ohio and Illinois also responded similarly to

site-specific summer temperatures. Abundances were greatest

in both Ohio and Illinois when accumulated GDDs were less

than average (i.e. cooler; Fig. 2a, b, parameter a10 avgGDDj).

This effect was strongest at the warmest sites in Ohio and at

the coolest sites in Illinois, but the effect was weaker in Illi-

nois. Precipitation had a minimal and inconsistent impact on

abundances in both states (Fig. 2a, b, parameters a14 PDIj,t

and a15 PDI2
j;t ). When all other covariates were held constant,

Figure 2 Parameter estimates from negative binomial regression models for (a) Ohio and (b) Illinois estimating weekly expected

monarch abundances at survey locations for 1996 to 2011. Error bars represent 95% credible intervals. White circles represent spring

effects, black circles represent summer effects and grey circles represent the intercept and week effect. a1, intercept; a2, weekk; a3,

spPRECt; a4, spPREC2
t ; a5, spGDDt; a6, spGDD2

t ; a7, spPRECt 3 weekk; a8, spGDDt 3 weekk; a9, GDDdiffj,k,t; a10, avgGDDj; a11,

avgGDD2
j ; a12, GDDdiffj,k,t 3 weekk; a13, GDDdiffj,k,t 3 avgGDDj 3 weekk; a14, PDIj,t; a15, PDI2

j,t ; a16, PDIj,t 3 weekk; a17, openj.
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higher abundances were expected at drier Ohio sites, whereas

higher abundances were expected at wetter Illinois

locations. (See Appendix S2 for more details on specific

model results.)

Ohio and Illinois models yielded Bayesian P-values of 0.42

and 0.50, respectively, indicating an adequate model fit. We

assessed the predictive strength of our model by partitioning

Ohio and Illinois data into year subsets and comparing

expected counts with those that were observed. We found

that our model fitted poorly (Bayesian P-value 5 0.1) with

only 8 years of survey data (1996–2003) in Ohio, and was

unable to accurately predict annual counts for 2004–2011

(Table 2, top row). Model fit was somewhat adequate with 8

years of Illinois survey data (Bayesian P-value 5 0.3), but

most year-specific P-values were not between 0.3 and 0.7

(Table 2). We ran two additional 8-year random subsets to

confirm that Ohio and Illinois models consistently gave poor

fits with only 8 years of survey data; P-values indicated that

this was the case for years even with survey data included

(‘year subset’; Ohio P-values 0.20, 0.09; Illinois P-values 0.23,

Figure 3 Expected monarch abundances per site at the end of the summer (week 28) for each year’s observed spring weather conditions

(temperature and precipitation) in (a) Ohio and (b) Illinois. Larger point size indicates higher counts. Shading of points indicates

standard deviation (SD) of a given year’s abundance estimate. Dotted vertical and horizontal lines indicate mean values of spring

temperature and precipitation, respectively, for 1996 to 2011. Relative conditions (e.g. ‘warm’, ‘wet’) of each quadrant are shown.

Table 2 Model predictive strength for subsets of Ohio and Illinois data.

Bayesian

P-value

Bayesian P-value

(subsequent
Bayesian P-values (subsequent years)

Year subset (year subset) years combined) 2004 2005 2006 2007 2008 2009 2010 2011

Ohio

1996–2003 0.10 0.95 1.00 0.90 0.88 0.93 1.00 1.00 0.88 0.10

1996–2005 0.40 0.44 - - 0.74 0.93 0.90 0.84 0.80 0.10

1996–2007 0.50 0.49 - - - - 0.80 0.76 0.70 0.06

1996–2009 0.54 0.42 - - - - - - 0.62 0.03

Illinois

1996–2003 0.32 0.77 1.00 0.93 0.15 0.03 0.88 0.30 0.13 0.14

1996–2005 0.42 0.40 - - 0.15 0.11 0.88 0.30 0.16 0.14

1996–2007 0.56 0.52 - - - - 0.72 0.51 0.22 0.10

1996–2009 0.60 0.30 - - - - - - 0.27 0.10

Data from each state were divided into 8-, 10-, 12- and 14-year subsets and Bayesian P-values were used to evaluate whether predictions were

consistently underestimated (closer to 0), overestimated (closer to 1), or neither (closer to 0.5) compared with observed values. Bayesian P-values

are shown for years for which survey data were included (‘year subset’ column) and for years for which survey data were omitted (‘subsequent

years combined’ and individual year columns). ‘Year subset’ P-values indicate how well the model fits the observed data for the specified years. P-

values in the third column (‘subsequent years combined’) indicate how well the model predicts counts, on average, for the subsequent years (e.g.

the first row is for 2004–2011, the second row for 2006–2011, etc.) under observed climate conditions during those years. Remaining columns

indicate how well the model predicts counts year-by-year (individual year columns) under climate conditions for subsequent years, as compared

with observed counts.
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0.18), and when predicting subsequent years combined (‘sub-

sequent years combined’; Ohio P-values 0.90, 0.84; Illinois P-

values 0.80, 0.82).

The addition of 2 years of Ohio data substantially

improved model fit and also improved predictions for subse-

quent years combined, although P-values for any given year

were not consistently in the acceptable range of 0.3–0.7

(Table 2, second row). Model fit and overall prediction accu-

racy generally improved for 12- and 14-year Ohio and Illi-

nois subsets, as well as for some individual years (e.g. 2009

in Illinois and 2010 in Ohio), although there was some

degree of over- and underestimation of counts (Table 2).

Interestingly, years with consistently under-predicted counts

in Ohio were not necessarily under-predicted in Illinois (e.g.

2006 counts were overestimated in Ohio and underestimated

in Illinois).

To further explore the year-specific predictive ability of

our model, we used parameter estimates from 16 different

model runs where we systematically removed 1 year from the

dataset and then used model results and true covariate values

for the missing year to predict monarch abundances during

week 28, separately in both Ohio and Illinois. We found that

predictive strength was high for most years that had average

spring precipitation and temperature values for the 16-year

period (e.g. 1998, 1999, 2001, 2008, 2009, Bayesian P-values

between 0.31 and 0.71 for both states; Fig. 4a, b). Addition-

ally, Bayesian P-values were closer to 0.5 when predicting a

given year’s count if another year with similar spring condi-

tions was already present in the data (e.g. 2002 and 2006;

2007 and 2010; Fig. 4a, b). Years with atypical spring temper-

ature and precipitation values (e.g. 1996, 1997, 2004, 2005,

2011) were consistently either under- or over-predicted, with

P-values close to 0 and 1, suggesting little predictive ability

in extreme covariate space.

DISCUSSION

Monarchs of a single population breeding in two distinct

regions responded similarly, and with varying degrees of sen-

sitivity, to climate conditions experienced during a shared

breeding phase in Texas and during separate recruitment

phases in Ohio and Illinois. Despite differences in collection

methods (i.e. the number of surveys per site, number and

geographical distribution of sites) between the two datasets,

the impacts of climate on monarch abundances were remark-

ably similar in the two regions. Likewise, a previous study

examining spatial synchrony among UK butterfly populations

as part of the Butterfly Monitoring Scheme found partial

synchrony at the regional scale (i.e. sample sites up to

200 km apart) due to regionally correlated weather patterns

(Sutcliffe et al., 1996). At such a large scale, local environ-

mental heterogeneity averaged out so that spatial correlation

in weather became the dominant factor influencing the pop-

ulation dynamics of several butterfly species (Sutcliffe et al.,

1996). From our results, we can be reasonably confident that

conclusions drawn from analyses using data from either

monitoring network can be extrapolated to a regional scale.

However, it is important to continue collecting data in both

Figure 4 Year-specific predictive accuracy for average monarch abundance across all sites during week 28 in (a) Ohio and (b) Illinois.

Annual Bayesian P-values shown in parentheses represent the ability of our model to accurately predict expected counts for that year,

compared with observed counts, given the parameter estimates from a model fit using the remaining 15 years of data. Predictive

strength was categorized as high (small point size; P-values 0.25–0.74), moderate (medium point size; P-values 0.15–0.24 and 0.75–0.84)

and low (large point size; P-values 0–0.14 and 0.85–1.0). Years where counts were underestimated on average are shaded light grey (P-

values< 0.3), overestimated counts are shaded in black (P-values> 0.7) and those not strongly under- or overestimated in either

direction are shaded in medium grey (P-values 0.3–0.7). The dotted box outlines indicate the warmer and drier spring conditions

expected in Texas by 2100 under climate models (CMIP5 multi-model mean projections; IPCC, 2014) where no data are currently

available on which to base predictions.
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states and to continually reassess spatial synchrony to evalu-

ate any potential divergence due to ongoing climate change.

Quantitative assessment of the temporal predictive ability

of our model revealed substantial uncertainty in year-specific

predictions of abundances, specifically when spring climate

conditions were at the margins of covariate space. When

spring temperature and precipitation values were close to the

16-year averages, or when values were similar to those

already included in the data (even if far from average), pre-

dictive ability was generally good (P-value range 0.3–0.7).

However, for years when spring climate was atypical for the

period, predictive strength was poor (P-values close to 0 and

1). This low predictive ability is a result of attempting to pre-

dict outside observed parameter space as well as simply a

lack of year-specific model fit for years with ‘extreme’ spring

conditions (e.g. 1996, 1997, 2004, 2005, 2011; results not

shown). By 2100, springs in Texas are predicted to be

approximately 1.7 8C warmer (i.e. GDD ranges of 330–390)

and precipitation is expected to decrease by approximately

10% (i.e. precipitation ranges of 3.5–12.0 cm) relative to

1986–2005 means (CMIP5 multi-model; IPCC, 2014), condi-

tions that are outside the observed range of our study period

(Fig. 4, dashed boxes; except 2011). If this is the case, our

ability to predict future summer population abundances of

monarchs in both Ohio and Illinois is tenuous.

Both spring and summer climate conditions affect abun-

dances of breeding monarchs in Ohio and Illinois. However,

like Zipkin et al. (2012), we found that spring conditions in

Texas had a greater influence on abundances than summer

conditions (but there were some minor differences in the

patterns of the relationship; see Appendix S2 for details).

Because annual spring climate variables were most important

for determining monarch abundance, it is necessary to have

a long time series with sufficient annual variation to accu-

rately estimate the effects of spring precipitation and temper-

ature on monarch abundance. Thus, we found poor model

fit and predictability when using only 8 years of data to esti-

mate parameters. The addition of only 2 years (2004 and

2005) of data dramatically improved model fit for the Ohio

and Illinois datasets. Our model was consistently accurate in

predicting counts for subsequent years combined, on average,

once 10 years of data were included in both datasets. This

suggests that predicting average annual counts over a number

of years (and climate conditions) may be more accurate than

predicting monarch counts under a specific temperature–pre-

cipitation scenario (e.g. spring conditions in a a given year).

For example, our Ohio model substantially overestimated

counts (P-values close to 1) in 2000 and 2003, years that had

springs which were only moderately warmer and drier than

average, suggesting a given year’s additional unexplained vari-

ation is affecting predictive power. We found that weekly

mean monarch counts (averaged across all sites) peaked after

week 28 in 2000 (peak week 29) and 2003 (week 31). This

difference, along with very low observed counts in both years

in Ohio (Fig. S1) and a wide longitudinal and environmental

gradient (compared with Illinois), makes year-specific predic-

tions quite difficult, even in the case of fairly average spring

conditions.

Understanding the impacts of climate on migratory species

is challenging because such species travel through several cli-

mates that may be differentially changing. Our study demon-

strates how analyzing distinct areas of a species’ migratory

range, and assessing the temporal predictive power of a given

model, can enhance our understanding of the nuances of

spatial synchrony among populations and our ability to

make accurate predictions about future abundances. Because

breeding monarch populations in Ohio and Illinois closely

mirrored one another in their responses to climate, future

changes in the Texan climate can have a geographically wide-

spread impact on subsequent stages in the annual cycle. Our

results also demonstrate how difficult it can be to accurately

predict future annual monarch abundances. Counts during

several years (2006, 2007 and 2010) were not consistently

over- or underestimated in both Ohio and Illinois, which

suggests there is unaccounted variation in monarch abundan-

ces that cannot be explained by climate factors. For instance,

the size of the population in Mexico at the end of winter has

been shown to influence summer abundance (Ries et al.,

2015), but these data have only been collected since 2005, so

were not included in this study. To fully understand all the

factors affecting monarch populations, future analyses should

include data on wintering populations as well as other habi-

tat and environmental covariates, including annual milkweed

availability (Pleasants & Oberhauser, 2013) and disease and

parasitism rates (Oberhauser, 2012).

Multiple climate factors will continue to change in their

means, variabilities, extremes and in the correlations between

them (Ehrl�en & Morris, 2015). Forecasting future ecological

conditions based on long-term observational studies is a use-

ful practice, but it has limitations (Kerr & Dobrowski, 2013)

that are not typically acknowledged (e.g. Acevedo et al.,

2010; Stewart et al., 2015). This is especially true when

attempting to anticipate events occurring across large spatial

scales or at extreme covariate values (Berteaux et al., 2006).

Predictions of how the geographical ranges or abundances of

individual species may change as climates alter have the

potential to be accurate, but there are too many uncertainties

to accept those predictions without rigorous, temporal vali-

dation (Kerr & Dobrowski, 2013). Our assessment approach

can lend credibility to such analyses by quantifying the reli-

ability of model predictions. This is particularly important

for threatened and/or declining species like the iconic mon-

arch butterfly.
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