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Abstract

Severe insect declines make headlines, but they are rarely based on systematic monitoring

outside of Europe. We estimate the rate of change in total butterfly abundance and the pop-

ulation trends for 81 species using 21 years of systematic monitoring in Ohio, USA. Total

abundance is declining at 2% per year, resulting in a cumulative 33% reduction in butterfly

abundance. Three times as many species have negative population trends compared to

positive trends. The rate of total decline and the proportion of species in decline mirror those

documented in three comparable long-term European monitoring programs. Multiple envi-

ronmental changes such as climate change, habitat degradation, and agricultural practices

may contribute to these declines in Ohio and shift the makeup of the butterfly community by

benefiting some species over others. Our analysis of life-history traits associated with popu-

lation trends shows an impact of climate change, as species with northern distributions and

fewer annual generations declined more rapidly. However, even common and invasive spe-

cies associated with human-dominated landscapes are declining, suggesting widespread

environmental causes for these trends. Declines in common species, although they may not

be close to extinction, will have an outsized impact on the ecosystem services provided by

insects. These results from the most extensive, systematic insect monitoring program in

North America demonstrate an ongoing defaunation in butterflies that on an annual scale

might be imperceptible, but cumulatively has reduced butterfly numbers by a third over 20

years.

Introduction

Defaunation, or the drastic loss of animal species and declines in abundance, threatens to

destabilize ecosystem functioning globally [1]. In comparison to studies of vertebrate popula-

tions, monitoring of changes in insect diversity is more difficult and far less prevalent [2,3].

Despite this, a global analysis of long-term population trends across 452 species estimated that
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insect abundance had declined 45% over 40 years [1]. Recently, more extreme declines in

insect biomass have been observed upon resampling after 2–4 decades [4,5]. Losses of total

biomass or total abundance across all species may be more consequential than local declines in

species diversity, as common insect species contribute the most to ecosystem services, such as

pollination [6]. However, our knowledge of insect declines is skewed towards European moni-

toring programs, including in global analyses [1]. In this study, we analyze long-term, region-

wide trends in abundance across a diversity of species for an entire insect group in North

America to examine the scope of insect defaunation.

The best source of data to assess insect defaunation comes from large-scale, systematic

monitoring programs of multiple species [3]. Through these efforts, trained volunteers or citi-

zen scientists have contributed much of the evidence for biotic responses to anthropogenic cli-

mate warming such as changes in insect phenology and range distributions [7,8]. Unlike

citizen science reporting of opportunistic observations or species checklists, many insect

monitoring programs use a systematic protocol developed specifically to track butterfly abun-

dances through time, both within and between seasons, and over large spatial scales [9]. Pol-

lard-based monitoring programs, modeled after the first nationwide Butterfly Monitoring

Scheme launched in the United Kingdom in 1977 (UKBMS), use weekly standardized counts

on fixed transects [10]. Their widespread adoption enables regional comparisons of insect

responses to environmental change or defaunation [11,12]. We compare our analysis with

exemplary long-term monitoring schemes from Europe to test if the rate of insect declines

generalizes across continents.

The best source of abundance data for assessment of chronic insect decline, and the most

prominent source of data in [1], is within the butterflies. Due to the relative ease and popular-

ity of monitoring butterflies, environmental assessments use them as an indicator taxa for the

general trajectory of biodiversity, assuming that they experience comparable pressures from

land-use change, climate change, and habitat degradation as other insect taxa [13–15]. Inten-

sive long-term monitoring of individual butterfly species has provided rigorous, quantitative

estimates of declines. Most prominently, the Eastern North American Monarch has declined

by over 85% [16] and the Western North American Monarch by over 95% [17] over the past

two decades. Severe declines have also been observed in some of the rarest butterflies [18,19].

These data from individual species of conservation concern may not represent a broader trend

across butterflies, which is what we aim to document in this study.

Volunteers, organized and trained by The Ohio Lepidopterists, have assembled the most

extensive dataset of systematic butterfly counts that stands alone in North America in terms of

the spatial extent and sampling frequency of Pollard walks [9]. Three other monitoring pro-

grams in the United States have documented long-term, multi-species population trends. In

Massachusetts, based on species lists from field trips, climate-driven community shifts explain

how the relative likelihood of species observations change over 18 years [20]. Shapiro and col-

leagues have made biweekly presence/absence observations and Pollard-based counts on 11

fixed transects along an elevational gradient in California over more than 45 years to docu-

ment species richness changes in response to climate and land-use, increasing abundance at a

high elevation site, and impacts of agricultural practices on abundance at low elevation sites

[21,22]. Several teams have monitored declines in specialist butterflies restricted to native prai-

rie patches in the Midwestern states with transect or timed survey methods over 26 years

[23,24]. The growing number of Pollard-based monitoring programs in the United States [9]

has the potential to track how widespread and consistent butterfly trends are across regions.

Here, we used 21 years of weekly butterfly surveys across 104 sites to assess abundance

trends for butterflies in Ohio. We estimate population trends for 81 species and test for their

association with life-history traits and phylogenetic relatedness. We review findings from
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European butterfly monitoring schemes for quantitative comparison with the rate of abun-

dance changes in Ohio. This analysis provides evidence of widespread insect defaunation and

species’ declines from the most extensive, systematic monitoring program in North America.

Materials and methods

Study sites

We studied butterfly population trends across the state of Ohio in the Midwestern USA. Over

its 116,100 km2 land area, Ohio has a mosaic of habitat types due to its partially glaciated his-

tory and its place at the confluence of Midwestern prairies, the Appalachian Mountains, and

the boreal forest [25]. Only remnants of wetland and prairie habitat remain in the state due to

human modification of the landscape. Some rare butterflies have declined due to forest succes-

sion following suppression of disturbances [26]. Agriculture and pastures (50%), forest (30%),

and urban development (10%) are the predominant land-use/land cover classes [27].

Monitoring sites have a Northeast to Southwest gradient in their mean annual temperatures

(mean 18.8˚C, range from 14.0˚C to 23.6˚C) from interpolated daily temperatures from Day-

met over 1996–2016 [28]. Mean annual temperatures at these sites grew at a linear trend of

0.3˚C per decade and growing season length has increased by 60 degree-days (base 5˚C) per

decade from 1980–2016. Monitoring sites span the state but are concentrated near cities (Fig

1). On average, within a radius of 2 kilometers, monitoring sites have 24% cropland and pas-

ture, 34% forest, and 30% urban land-use based on the National Land Cover Dataset [29].

Although not considered in this study, impervious surfaces from urban development influence

temperature-dependent butterfly phenology in Ohio through the urban heat island effect,

which may not be fully captured in these gridded temperature interpolations [30].

Monitoring surveys

Trained volunteers contributed 24,405 butterfly surveys from 1996 to 2016 as part of the Ohio

Lepidopterists Long-term Monitoring of Butterflies program. Volunteers surveyed on fixed

paths at approximately weekly intervals during the entire growing season from April through

October (median 23 of 30 weeks surveyed per year per site) and count every species within an

approximate 5-meter buffer around the observer [10]. Surveys are constrained to times of

good weather to increase the detectability of butterflies and last a mean 85 minutes in duration.

The annual number of monitored sites ranged from 13 in 1996 to a maximum of 80 in 2012.

We limited our analysis of abundance trends to the 104 sites with three or more years of moni-

toring data and 10 or more surveys per year at each site (Fig 1). We included observations of

all sites with at least 5 surveys per year in phenology models that we used to interpolate missing

counts before estimating abundance [31].

All 102 species with population indices estimated by phenology models contributed to the

total abundance analysis. We limited species-specific analysis to 81 species with sufficient pop-

ulation indices for estimating trends (present at five or more sites and for 10 or more years).

Species naming conventions in the monitoring program follow those used in [25,32] except

for combining all observations of Celastrina ladon (Spring Azure) and Celastrina neglecta
(Summer Azure) as an unresolved species complex.

Population indices

We estimated population indices for each site x year x species by adapting methods established

for the UKBMS that account for missing surveys and butterfly phenology over the season

[31,33]. We used generalized additive models for each species to estimate variation in counts
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in order to interpolate missing surveys with model predictions [31,34]. To account for sea-

sonal, spatial, and interannual variation in species phenology, we extended the regional gener-

alized additive model approach (12, Supplement 1) by including spatially-explicit site locations

and converting calendar dates of observations to degree-days [35], which can improve butter-

fly phenology predictions [36]. We calculated the population index by integrating over the

weekly counts and missing survey interpolations using the trapezoid method [31].

Controlling for confounding factors

We accounted for differences in sampling across sites and years so that our modeled trends

would capture changes in abundance rather than changes in detection probability [37]. True

abundance is confounded with detection probability when using counts from Pollard walks

[38]. Butterfly monitoring protocols that account for detection probability like distance

Fig 1. Transect locations monitored by volunteers with the Ohio Lepidopterists. Of the 147 sites, this analysis used the 104 sites

monitored for three or more years.

https://doi.org/10.1371/journal.pone.0216270.g001
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sampling are commonly used for single-species studies [39], but untenable for scaling up to a

regional program. Most analyses of Pollard walks assume no systematic change in detectability

(but see [40]) because counts correlate closely with true abundance estimates from distance

sampling [41,42]. We used two covariates to account for variation in sampling and its influ-

ence on population indices for each site x year [20,37,43]. We tracked the mean number of

species reported in each survey, or list-length, which is a synthetic measure of factors influenc-

ing detectability such as weather conditions, site quality, and observer effort [20,44,45]. We

treated the total duration of surveys in minutes as an offset in the models of population trends.

Because we interpolated missing surveys for the population indices, we projected what the

total duration would be if all 30 weeks had been surveyed at the mean duration reported for

that site x year.

Sampling across the state is nonrandom because participants choose transect locations, a

common practice in volunteer-based monitoring programs. Since sites generally cluster near

human population centers with a greater proportion of developed land-use and a lesser pro-

portion of agriculture, we assumed that population trends at the 104 sites across the state

sufficiently capture the broader statewide trends [37]. Comparisons between the UKBMS vol-

unteer-placed transects and a broader survey with stratified, random sampling show congru-

ence between species trends estimated from each monitoring strategy [46].

Population trends

We used generalized linear mixed models to estimate temporal trends in relative abundance

for 81 species from their population indices [47]. We modeled population indices at each site

and year as an over-dispersed Poisson random variable with covariates on the log-link scale.

logðPopulationIndexÞ ¼ b0 þ b1 � year þ b2 � listlengthþ logðdurationÞ þ siteIDþ yearIDþ siteyearID ð1Þ

We included the numeric year and mean list length for each population index as covariates,

which were centered to aid in model fitting and interpretation [48]. We used the coefficient

for year (β2) as the annual trend in population indices as our main result. We controlled for

changes in sampling by using the total duration of surveys as a model offset, converting the

dependent variable to a rate of butterflies counted per minute. Random effects of individual

sites and years account for spatial and temporal variation in population counts deviating from

the statewide trend. We accounted for over-dispersion in the Poisson-distributed counts with

the random effect siteyearID for each unique observation [49]. We modeled trends in total

abundance using the same modeling approach, but summed across 102 species’ population

indices for each site x year observation. We interpreted trends as an annual rate by taking the

geometric mean rate of change between the predicted abundance between two points in time

after setting the list-length covariate to its mean and excluding the random effects [47]. For

comparisons with other monitoring programs, we used a p-value threshold of 0.05 to classify

trends as positive, negative, or stable.

Our approach is similar to that used by the UKBMS and other European monitoring pro-

grams which use generalized linear models in TRIM software [50]. One key difference is that

our site and annual fluctuations from the temporal trend were derived from random effects

rather than fixed effects, which reduces spurious detection of trends [43]. Another key differ-

ence is that TRIM does not allow for continuous covariates, which we used to account for sam-

pling variation instead of assuming no confounding pattern in sampling effort. To validate

that our modeling choices did not unreasonably influence the results, we used three alternative

approaches: (1) a Poisson-based generalized linear model (Eq 1 without the random effect

siteyearID); (2) a nonlinear generalized additive mixed model with a smoothing spline

Long-term butterfly abundance declines
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replacing the linear temporal trend [43]; and (3) a TRIM model with over-dispersion and serial

temporal correlation but no sampling covariates or offsets [50]. We compared similarity in the

total abundance trends, the correlation of species’ trends between model alternatives, and the

classification of species’ trends as positive, stable, or negative.

Comparison with other studies

We compare our findings to three European long-term, regional butterfly monitoring pro-

grams with systematic Pollard walks that publish regular updates on total abundance and

species’ trends [40,51,52]. Although all programs analyzed counts with Poisson regression,

we had to standardize them differently depending on the data available and their modeling

approaches. The UKBMS reports total abundance indicators as the geometric mean of species

trends from two groups: specialist and countryside species [51]. We used the reported

smoothed annual index values for these indicators because the first year of monitoring is an

outlier that exaggerates declines (UK Biodiversity Indicators 2018, http://jncc.defra.gov.uk/

page-4236). We used the Dutch Butterfly Monitoring Scheme’s reported cumulative annual

trend in total butterflies counted across all transects after correction for missing surveys [52].

For the Catalan Butterfly Monitoring Scheme, we extracted annual population indices from

the 2015–2016 annual report [53] with WebPlotDigitizer 4.1 [54] and performed a Poisson

regression over time with annual random effects to obtain a comparable abundance trend. We

converted total abundance trends into annual percent rates for comparison. We tallied the

increases and decreases in species’ trends for each region reported by the monitoring program,

without accounting for differences in their statistical approaches.

Species’ traits

To explore potential mechanisms that might explain species-level variation in abundance

trends, we modeled the estimates of species’ temporal trends (β1) as a response to life history

traits [20,30]. Of the 81 species, we classified 14 as migratory species and 67 as year-round resi-

dents of Ohio. We analyzed traits models both across all species and after excluding migratory

species, which would have population trends driven by factors outside of Ohio. We collected

traits that relate to insect responses to climate change and habitat change, as these are two pri-

mary drivers of butterfly community changes [7,20,21].

We tested if butterflies with traits making them more adaptive to a warming climate have

more positive population trends. We compared species with different range distributions,

assuming that species distributed in warmer, Southern regions would be more likely to

increase in Ohio as the climate warms. We assigned species’ ranges as Southern, core, or

Northern by range maps and county records [25,32]. Voltinism, or the number of generations

per year, increases in warmer years and warmer regions within many species in Ohio [55],

compared with obligate univoltine species that do not adjust their lifecycle based on changing

growing season length. We assigned voltinism observed in Ohio as univoltine, bivoltine, or

multivoltine (3+ generations per year) based on visualization of phenology models and [25].

The life stage in which species overwinter, obtained from [25], contributes to its ability to

respond to warming with shifts in phenology [20,56].

We would expect more generalist species, in host plant requirements and habitat prefer-

ences, to have more positive population trends in a landscape heavily modified by human use

[21,51]. For host plant requirements, we gathered two traits from the literature that describe

host plant category (forb, graminoid, or woody) and whether the butterfly’s host plant require-

ments span multiple plant families or are limited to one plant family or genus [25]. Mean wing

size from [32] was used as a surrogate of dispersal ability between habitats, which is expected

Long-term butterfly abundance declines
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to increase ability to access resources in a fragmented landscape. Three of the authors assigned

species as wetland-dependent or human-disturbance tolerant species, which we aggregated

into two binary variables to test if these specialist or generalist habitat preferences correlate

with abundance trends.

We used univariate linear models for each life history trait both for all 81 species and with

the 14 migratory species excluded. To account for the phylogenetic relatedness and the non-

independence across species, we also used phylogenetic generalized least squares models that

estimated branch length transformations with Pagel’s lambda by maximum likelihood [57].

The phylogenetic models excluded three species without gene sequences available.

Phylogenetic tree

We obtained coding sequences for the most widely used DNA barcoding locus, the mitochon-

drial cytochrome c oxidase subunit I gene COI-5P, from GenBank [58]. For species not found

in GenBank, we obtained coding sequences from The Barcode of Life Data System [59]. When

possible, we obtained sequences from multiple sampling locations in North America.

Owing to the relatively small size of our multiple-species alignment—i.e. a single mtDNA

locus, 651 base pairs in length—we decided to take both a constrained and unconstrained

maximum likelihood approach to estimate the genealogical relationships of our samples. Some

of the species from our analysis, though not all, were recently used in a more comprehensive

phylogenetic analysis of butterflies [60], thus prompting us to constrain the phylogenetic back-

bone of our tree using family-level relationships. We report details of our workflow in Supple-

ment 1.

Statistical analysis

We used R 3.5.2 for analysis [61] and share the data and our code on Dryad. We fit generalized

additive models with themgcv package [34], generalized linear mixed models with the lme4
package [62], generalized additive mixed models with the poptrend package [43], and phyloge-

netic generalized least squares models with the ape and caper packages [63,64]. Confidence

intervals for the temporal trends were estimated with bootstrapped model fits with themer-
Tools and poptrend packages [43,65]. For models of population trends, we estimated the good-

ness of fit with R2 developed for generalized linear mixed models that give marginal and

conditional R2 values for the fixed effects and the fixed + random effects, respectively [66,67].

For trait models, we reported the adjusted R2 values from the univariate models.

Results

The statewide relative abundance summed across all species declined at an annual rate of 2.0%

(β1 = -0.020, std. err. 0.005, p< 0.001), accumulating a 33% decline over 1996–2016 (Table 1,

Fig 2). Among population trends, more than three times as many species are declining than

increasing in abundance at our threshold of p< 0.05 (32 versus 9, respectively) (Table 2, Fig 3

for migratory species and Fig 4 for resident species). Positive and negative species trends are

distributed across the phylogenetic tree (Figure A in S1 Appendix).

Both in the total trend in abundance and in the proportion of species with declines, these

results are similar to three European butterfly monitoring schemes (Table 3). Although the

longer-running programs show larger cumulative declines, the annual rate of change in total

abundance ranges from -2.0% to -2.6% for Ohio, Catalonia, and the Netherlands. The United

Kingdom total abundance trends are split between generalist species (-0.8%) and specialist spe-

cies (-2.4%). Across monitoring programs, declining species outnumber increasing species by

a factor of two to three (Table 3).

Long-term butterfly abundance declines
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In general, traits associated with species’ responses to climate were more important, based

on the predictive ability (adjusted R2) of univariate models, than traits associated with habitat

and host plant restrictions (Fig 5, Tables A and B in S1 Appendix). Phylogenetic signal was

included for most traits’ models, so we focus on the phylogenetic generalized least squares

results. The Monarch (Danaus plexippus) was the only migratory species in decline, although

the others had erratic annual fluctuations that make trend estimation difficult (Fig 3). Species

with more northern geographic ranges were associated with more negative population trends.

Univoltine species had more negative population trends than bivoltine or multivoltine species.

Overwintering stage did not have a strong effect on trend. Species eating forb host plants had

negative trends on average, but there was no effect of host plant specialization on population

Table 1. Generalized linear mixed model of total abundance across all species. The natural logarithm of the total survey duration across the monitoring season was an

offset in the model. The model’s marginal R2 was 0.20 for its fixed effects and its conditional R2 was 0.61 when including variation in sites, years, and over-dispersion with

random effects parameters.

Fixed effects B std.error z statistic p.value

Intercept 1.33 0.0506 26.4 <0.001

Year (numeric) -0.0203 0.00496 -4.11 <0.001

List-length 0.104 0.00587 17.7 <0.001

Random effects std. dev. # groups

Site x year ID 0.278 1005

Site ID 0.417 104

Year ID (factor) 0.121 21

https://doi.org/10.1371/journal.pone.0216270.t001

Fig 2. The statewide relative abundance of butterflies (all species aggregated) in Ohio declined by 33% over 1996–2016. Plotted

are model predictions for each year based on the fixed effects of year (solid line) and annual random effects (dots) to show annual

variation about the trend line. Shading shows the 95% confidence interval based on bootstrapped model fits for the temporal trend.

https://doi.org/10.1371/journal.pone.0216270.g002
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Table 2. Species’ abundance trends over time. Trends are the coefficient of year in our generalized linear mixed models with the accompanying standard error and p-

value for the coefficient (Eq 1). We show the data available for each species’ model: total number of butterflies recorded for all years, number of sites, number of years, and

the number of population indices calculated for each species for use in abundance model (Site x year).

Species Sample size GLMM temporal trend

Common Latin Total # counted Sites Years Site/ year Trend coef. Std. error P

Aphrodite Fritillary Speyeria aphrodite 477 9 16 131 -0.233 0.060 <0.001
Baltimore Euphydryas phaeton 818 7 17 83 -0.224 0.071 0.002
American Copper Lycaena phlaeas 10,255 31 21 359 -0.193 0.024 <0.001
Hoary Edge Skipper Achalarus lyciades 291 7 19 88 -0.178 0.061 0.003
Milbert’s Tortoise Shell Nymphalis milberti 140 8 16 101 -0.174 0.065 0.008
European Skipper Thymelicus lineola 46,549 57 21 609 -0.173 0.021 <0.001
Southern Cloudywing Thorybes bathyllus 667 15 20 194 -0.129 0.037 <0.001
Falcate Orangetip Anthocharis midea 756 8 18 103 -0.123 0.040 0.002
Dreamy Duskywing Erynnis icelus 879 18 21 260 -0.120 0.024 <0.001
Swarthy Skipper Nastra lherminier 448 7 17 78 -0.114 0.041 0.006
Tawny Emperor Asterocampa clyton 937 27 19 308 -0.114 0.036 0.002
Leonard’s Skipper Hesperia leonardus 1,348 11 20 144 -0.110 0.025 <0.001
White M Hairstreak Parrhasius m-album 95 7 15 110 -0.105 0.081 0.195

Northern Cloudywing Thorybes pylades 547 16 20 210 -0.095 0.033 0.004
Coral Hairstreak Satyrium titus 607 15 21 217 -0.094 0.025 <0.001
Juvenal’s Duskywing Erynnis juvenalis 3,838 38 21 487 -0.083 0.020 <0.001
Common Wood Nymph Cercyonis pegala 21,603 77 21 788 -0.073 0.013 <0.001
Common Sooty Wing Pholisora catullus 1,142 34 20 398 -0.072 0.015 <0.001
Sleepy Duskywing Erynnis brizo 811 13 18 156 -0.071 0.032 0.027
Monarch Danaus plexippus 46,070 104 21 1,005 -0.070 0.023 0.002
Red-spotted Purple Limenitis arthemis 6,226 87 21 913 -0.064 0.019 <0.001
Bronze Copper Lycaena hyllus 656 23 21 254 -0.063 0.039 0.103

Northern Broken-Dash Wallengrenia egeremet 5,959 49 21 528 -0.062 0.018 <0.001
Tawny-edged Skipper Polites themistocles 2,322 48 21 541 -0.058 0.016 <0.001
West Virginia White Pieris virginiensis 214 5 16 63 -0.058 0.059 0.329

Fiery Skipper Hylephila phyleus 3,917 57 19 646 -0.057 0.061 0.351

Meadow Fritillary Boloria bellona 5,447 55 21 598 -0.056 0.027 0.040
Orange Sulphur Colias eurytheme 62,160 101 21 996 -0.055 0.021 0.008
Long Dash Polites mystic 1,317 21 21 219 -0.047 0.020 0.022
American Lady Vanessa virginiensis 2,029 54 21 637 -0.045 0.033 0.179

Black Swallowtail Papilio polyxenes 12,410 92 21 941 -0.044 0.015 0.004
Gray Hairstreak Strymon melinus 2,418 49 19 587 -0.044 0.026 0.089

Painted Lady Vanessa cardui 5,564 80 21 873 -0.042 0.054 0.440

Great Spangled Fritillary Speyeria cybele 33,573 90 21 904 -0.041 0.020 0.047
Hobomok Skipper Poanes hobomok 6,863 51 21 576 -0.040 0.014 0.005
Viceroy Limenitis archippus 16,079 85 21 896 -0.039 0.016 0.014
Cabbage White Pieris rapae 304,105 104 21 1,005 -0.038 0.010 <0.001
Hackberry Emperor Asterocampa celtis 9,992 42 20 467 -0.037 0.017 0.033
Striped Hairstreak Satyrium liparops 155 14 18 211 -0.028 0.067 0.682

Variegated Fritillary Euptoieta claudia 956 17 19 204 -0.027 0.052 0.603

Little Wood Satyr Megisto cymela 76,612 87 21 878 -0.026 0.009 0.005
American Snout Butterfly Libytheana carinenta 1,007 36 18 418 -0.025 0.050 0.612

Hickory Hairstreak Satyrium caryaevorum 196 12 20 170 -0.023 0.053 0.656

Mourning Cloak Nymphalis antiopa 3,214 85 21 905 -0.021 0.018 0.256

Clouded Sulphur Colias philodice 49,267 102 21 998 -0.014 0.014 0.286

(Continued)
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trends. Wing length, wetland habitat preference, or human-disturbed habitat preference were

not associated with trends.

Our choice of modeling approach did not change the overall evidence of defaunation. Gen-

eralized linear mixed models with Poisson-distributed errors and generalized additive mixed

models estimated declines in total abundance similar in magnitude at -1.83% and -2.13%

annual rates, respectively. The annual trend estimate from TRIM, without sampling covariates,

was half the magnitude at -0.87%. Species’ trends had high correlations between pairwise

Table 2. (Continued)

Species Sample size GLMM temporal trend

Common Latin Total # counted Sites Years Site/ year Trend coef. Std. error P

Spicebush Swallowtail Papilio troilus 25,322 82 21 858 -0.014 0.014 0.324

Dun Skipper Euphyes vestris 1,684 49 21 585 -0.014 0.012 0.224

Question Mark Polygonia interrogationis 6,564 88 21 915 -0.012 0.025 0.640

Delaware Skipper Atrytone logan 1,086 30 21 313 -0.011 0.029 0.697

Horace’s Duskywing Erynnis horatius 2,885 31 21 376 -0.011 0.023 0.633

Eastern Tiger Swallowtail Papilio glaucus 29,299 101 21 996 -0.010 0.015 0.483

Pearl Crescent Phyciodes tharos 180,631 104 21 1,005 -0.010 0.014 0.461

Little Yellow Eurema lisa 1,681 24 18 287 -0.008 0.073 0.917

Eastern Comma Polygonia comma 6,222 92 21 944 -0.007 0.011 0.561

Giant Swallowtail Papilio cresphontes 1,109 28 21 322 0.002 0.019 0.912

Banded Hairstreak Satyrium calanus 1,107 36 21 468 0.004 0.031 0.896

Silver-spotted Skipper Epargyreus clarus 54,462 102 21 996 0.005 0.012 0.672

Red Admiral Vanessa atalanta 28,637 97 21 969 0.008 0.044 0.865

Red-banded Hairstreak Calycopis cecrops 795 7 17 91 0.009 0.057 0.879

Crossline Skipper Polites origenes 1,087 27 21 347 0.009 0.020 0.636

Sachem Atalopedes campestris 1,445 19 18 231 0.013 0.058 0.823

Peck’s Skipper Polites peckius 23,702 90 21 905 0.014 0.014 0.306

Northern Eyed Brown Satyrodes eurydice 1,342 13 21 174 0.016 0.035 0.651

Eastern Tailed Blue Everes comyntas 56,137 99 21 974 0.016 0.010 0.113

Henry’s Elfin Callophrys henrici 330 7 17 76 0.017 0.055 0.752

Little Glassy Wing Pompeius verna 8,658 56 21 632 0.019 0.019 0.307

Silvery Checkerspot Chlosyne nycteis 2,049 20 19 224 0.039 0.022 0.074

Spring/Summer Azure Celastrina ladon/neglecta 63,947 103 21 1,002 0.047 0.021 0.022
Common Buckeye Junonia coenia 15,771 73 19 834 0.050 0.067 0.459

Pipevine Swallowtail Battus philenor 703 23 18 279 0.053 0.033 0.110

Least Skipper Ancyloxypha numitor 27,506 84 21 844 0.053 0.015 <0.001
Appalachian Eyed Brown Satyrodes appalachia 2,118 12 18 118 0.060 0.045 0.181

Zabulon Skipper Poanes zabulon 10,960 71 21 747 0.061 0.022 0.004
Northern Pearly-Eye Enodia anthedon 2,785 37 21 434 0.071 0.020 <0.001
Zebra Swallowtail Eurytides marcellus 1,349 18 18 224 0.075 0.030 0.011
Cloudless Sulphur Phoebis sennae 1,840 27 19 355 0.088 0.057 0.121

Common Checkered-Skipper Pyrgus communis 3,089 33 18 357 0.092 0.046 0.046
Wild Indigo Duskywing Erynnis baptisiae 15,209 51 19 570 0.106 0.020 <0.001
Harvester Feniseca tarquinius 341 11 20 143 0.122 0.061 0.046
Sleepy Orange Eurema nicippe 2,028 6 17 63 0.146 0.134 0.276

Gemmed Satyr Cyllopsis gemma 1,059 6 16 81 0.228 0.052 <0.001

Bold font indicates trends that were classified as increasing or decreasing (p< 0.05).

https://doi.org/10.1371/journal.pone.0216270.t002
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comparisons, but TRIM models estimated notably more positive trends compared to the other

three approaches (Table C in S1 Appendix).

Discussion

We show that the total butterfly abundance has declined by 33% over 20 years in Ohio. This

rate is faster than the global abundance trend estimated for Lepidoptera (35% over 40 years)

and corresponds more closely to the steeper declines (45% over 40 years) estimated for all

insects [1]. The Ohio butterfly monitoring program, judged by the weekly frequency, 20-year

time period, and statewide spatial extent of its surveys, is the most extensive systematic insect

survey in North America and comparable to three exemplary European butterfly monitoring

schemes. The annualized 2% rate of decline in this study aligns closely with trends from Euro-

pean butterfly monitoring, confirming the decline of the most closely monitored group of

insects in both Europe and North America (Table 3). With less known about other insect taxa,

butterflies provide a necessary, if imperfect, surrogate to understand the trajectory and poten-

tial mechanisms behind broader insect trends [13]. Extensive in both time and space, the

decline in butterfly abundance reported here is the best estimate for the current rate of insect

defaunation in North America.

The proportion of butterfly species with population declines compared to population

increases is similar between Ohio (negative trends three times more numerous) and European

studies (negative trends 2–3 times more numerous) (Table 3). In other taxa, moths in the

United Kingdom show a similar proportion of species declines [68]. Long-term monitoring in

protected areas, although less extensive in space, shows more positive species trends for moths

in Finland (at 67.7˚ latitude) and across pollinators in Spain (at 850–1750 m. elevations)

[69,70]. These counterexamples show how insect communities may shift at high-latitude or

high-elevation sites with anthropogenic climate warming [21] or may persist in more remote

areas. However, butterfly monitoring in populated areas show a consistency in observed

declines (Table 3) that we argue would generalize to other landscapes dominated by human

use.

We demonstrate abundance declines in species that are generalist, widespread, and not

considered vulnerable to extinction [25,71]. Although few may share concern for the most

Fig 3. Statewide trends of 14 migratory species with annual variation. Plotted are model predictions for each year based on the

fixed effects of year (solid line) and annual random effects (dots) to show annual variation about the trend line. Shading shows 95%

confidence intervals based on bootstrapped model fits in the poptrend package [43] for the temporal trend and for the annual

random effects. The first year’s estimate is set to a value of 1 as a baseline for relative population changes.

https://doi.org/10.1371/journal.pone.0216270.g003

Long-term butterfly abundance declines

PLOS ONE | https://doi.org/10.1371/journal.pone.0216270 July 9, 2019 11 / 21

https://doi.org/10.1371/journal.pone.0216270.g003
https://doi.org/10.1371/journal.pone.0216270


widespread, invasive butterfly in the world’s agricultural and urban settings [72], declines in

Pieris rapae could be indicative of persistent environmental stressors that would affect other

species as well. Generalist species that exploit human-disturbed habitat with annual rates of

decline of more than 5% include Lycaena phlaeas, Thymelicus lineola (non-native), Cercyonis
pegala, and Colias eurytheme (Table 2, Fig 4). We would expect negative environmental

Fig 4. Statewide trends of 67 resident species with annual variation. Plotted are model predictions for each year based on the fixed

effects of year (solid line) and annual random effects (dots) to show annual variation about the trend line. Shading shows 95%

confidence intervals based on bootstrapped model fits in the poptrend package [43] for the temporal trend and for the annual

random effects. The first year’s estimate is set to a value of 1 as a baseline for relative population changes.

https://doi.org/10.1371/journal.pone.0216270.g004
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changes to disproportionately affect rare species prone to the demographic dangers of small

populations or specialist species that rely on a narrow range of resources or habitat (UKBMS

in Table 3, [24]). This pattern of species declines would lead to biotic homogenization as rarer

species are lost and common, disturbance-tolerant species remain [73,74]. However, our study

adds another example of declines in common butterfly species thought to be well-suited to

human-modified habitat [11,21,75].

The Eastern North American migratory Monarch (Danaus plexippus) abundance in Ohio is

declining by 7% per year. The Monarch is the only declining migratory species out of 14 in our

analysis. Despite disagreements about whether summer abundance trends have tracked winter

colony declines [76,77], our study shows that the long-term trends correspond. However, our

Table 3. Comparison of this study’s results to European monitoring programs for rates of change in total abundance and classification of species trends as positive

or negative. Number of sites represents those reported to contribute to the analysis, but may no longer be active. Number of butterflies counted per year is an approxima-

tion based on the most recent years of monitoring described in the references.

Region (km2) Years Sites Counted/year (x 1000) Annualized trend in total

abundance (cumulative)

Species’ trends Reference

Positive Negative Stable/not signif.

United Kingdom (242,500) 41 (1976–2017) 3,164 1,700 -0.8% (-28%) countryside

-2.4% (-63%) specialist

11 22 24 [51]

Netherlands (42,508) 25 (1992–2017) 600 250 -2.0% (-40%) 11 23 13 [52]

Catalonia, Spain (32,108) 22 (1994–2016) 116 122 -2.6% (-44%) 15 46 5 [40,53]

Ohio, USA (116,100) 20 (1996–2016) 104 80 -2.0% (-33%) 9 32 40 this study

https://doi.org/10.1371/journal.pone.0216270.t003

Fig 5. Species’ traits are associated with variation in the statewide trends in abundance. We plot each species’ trend compared to

the six most important traits for the 78 species included in the phylogenetic GLS models with full results in Table A in S1 Appendix.

Squares represent the regression coefficients with 95% confidence intervals shown in lines. Dots show trend estimates for each

species from Table 1 uncorrected for phylogeny, jittered for visualization.

https://doi.org/10.1371/journal.pone.0216270.g005
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study’s first two years have very high Monarch population indices which could be outliers (Fig

3) following the two largest recorded winter population counts [16,78]. With these two years

removed, the statewide Monarch trend is a 4% decline per year, showing that the magnitude of

summer abundance trends are sensitive to the years of data included. Our results align with a

study using Illinois systematic monitoring data that shows a summer abundance decline for

monarchs over two decades, but only during the period from 1994–2003, not from 2004–2013

[79]. A more recent study showed no decline during the summer during 2004–2016 using a

population index from NABA counts [78]. The trend we document comes from the sum of

multiple summer breeding generations and fall migratory butterflies returning to Mexico; esti-

mates of abundance for these separate generations may be required to model how different

stages of the lifecycle contribute to the long-term decline in the winter colonies [78].

Our statewide analysis has potential limitations when used to evaluate individual species for

potential conservation interventions or forecasts of population trajectories. Even with system-

atic monitoring, accurate estimates of insect abundance are missing from many species—a

fifth of regularly observed species in Ohio did not meet our minimum data requirements to

for us to estimate trends. None of these species are considered to be of conservation concern,

but this also means that we would be limited in our ability to determine if their populations

have reached threatened status. Targeted surveys of selected species, non-adult life stages, or

rarely-sampled habitats can expand the monitoring to data-deficient species commonly

excluded by protocols designed to monitor many species efficiently [51] and can be used to

estimate demographic responses to environmental drivers not apparent from adult butterfly

counts [80]. Additional targeted species assessments could inform how worried we should be

about the extreme population declines estimated for species observed at fewer than 10 moni-

toring sites (Table 2). However, more data and more complex population models may not

always lead to accurate predictions for insect population trajectories [81]. Rather than recom-

mending other systematic monitoring programs accumulate decades of data before assessing

insect declines, we would advocate sharing data across regional programs to increase statistical

power, as in [11], and integrating systematic monitoring with historical records and opportu-

nistic observations to assess insect vulnerability more rapidly by using all potential sources of

data [82,83].

Insect declines have multifaceted causes, and the relative impact of these causes is still

unknown [84]. Although analysis of the causes of site differences in abundance or species

trends is beyond the scope of this study, we discuss three environmental drivers commonly

associated with global insect declines: habitat loss and fragmentation, climate change, and agri-

cultural intensification [84,85]. If species’ traits are associated with population trends, then

their relationships may suggest which environmental changes affect population responses in

species sharing these traits [47,84,86]. In this study, life-history traits were weakly predictive of

population trends, but their associations provide hypotheses that could be tested further [47].

Habitat loss and fragmentation

In Ohio, habitat loss and fragmentation plateaued well before butterfly monitoring started,

with human population growth slowing by 1970. In common with other Midwestern states,

Ohio had already lost tallgrass prairie species, such as the Regal Fritillary (Speyeria idalia), due

to habitat conversion to agriculture [25,26]. Land-use has changed slowly over the course of

the monitoring program; fewer than 10% of monitoring sites have had more than 2.5% change

in the surrounding (2-km radius) developed, agriculture, or forest land cover from 2001–2011

[29]. The persistence of butterfly populations in a landscape of habitat fragments are mediated

by species’ traits that permit them to either move between more isolated resources or persist in
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smaller, localized populations [85,87]. Wing size is one life history trait associated with dis-

persal ability, but it had no association with species’ population trends (Tables A and B in S1

Appendix). However, defining habitat patches by land-use classes overlooks how mobile insect

populations are bound by resources, varying across the lifecycle, rather than area [88,89].

Although there has been little wholesale habitat conversion around our study transects, degra-

dation of the remaining habitat could be a cause of the general decline in butterfly abundance.

Climate change

Species trends are associated with two life-history traits, voltinism and range distribution,

which suggest that the butterfly community is changing with the warming climate. Species that

only complete one annual generation, or univoltine species, had more negative abundance

trends. This aligns with obligate univoltine species becoming less common in Massachusetts

[20], but is the opposite of the findings in Spain where multivoltine species are in steeper

declines with exposure to increasingly dry summers [40]. Multivoltine species may be more

adaptive to annual and spatial variation in growing season length as many have plasticity in

the voltinism observed within Ohio [25]. For many species with flexible voltinism in Ohio,

adding an extra generation in warmer summers increases their annual population growth

rates [55]. Northern-distributed species have more negative population trends compared to

widely distributed or southern species. This corresponds with findings from Massachusetts

and Europe that warm-adapted species are replacing cool-adapted species as range distribu-

tions shift [20,90]. Even though these two traits should increase abundance for some species

as the climate warms, it has not been enough to prevent the overall decline in butterfly

abundance.

Agricultural intensification

Cropland and pasture make up half of Ohio’s land area, so we would expect agricultural prac-

tices to affect statewide insect abundance. One assessment of pollinator habitat suitability

based on land-use, conservation reserve program acreage, and crop type estimated an increase

in resources in Ohio from 1982 through 2002, followed by a stable trend [91]. However, agri-

cultural practices can decrease insect abundance with systemic insecticides, herbicide use on

host plants or nectar resources, and nitrogen fertilization that alters the composition of sur-

rounding plant communities.

In Ohio, the use of neonicotinoids rapidly increased after 2004 when they became widely

used on corn and soybeans [92,93]. The mechanistic link between neonicotinoid insecticides

and insect declines is established and observational studies have shown widespread impacts of

their use [94–96]. Even though seed-coatings with neonicotinoids reduce broadcast spraying,

the mechanical planting of these seeds exposes widespread areas around farms to contami-

nated dust that exposes non-target plants and insects to biologically-relevant concentrations

[97,98]. In the United Kingdom and California, neonicotinoids are associated with butterfly

declines [22,99] and hinder butterfly larval development on host plants [100]. We did not

design this study to test whether neonicotinoids affect butterfly abundance in Ohio. However,

the observed declines across common and generalist species, which we otherwise would expect

to exploit an agricultural or human-altered landscape, would be consistent with widespread

exposure to insecticides.

Species that eat forbs as larvae have negative population trends (Fig 5). Both herbicide use

and nitrogen deposition may alter plant communities to favor grasses over forbs [101]. In

Ohio, glyphosate use has increased linearly, and is now applied at 6 times the rate it was in

1996 [92,93]. Milkweed losses, attributed to increased glyphosate use in the Midwest,
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contribute to declines in Monarch butterfly abundance [79,80]. Nitrogen increases, which may

come from fertilization or atmospheric deposition, have been linked to declines in grassland

butterfly species adapted to low-nitrogen environments [102–104] and to higher mortality

during larval development on enriched host plants [105].

Conclusions

Systematic, long-term surveys of butterflies provide the most rigorous estimate for the rate of

insect declines. This study demonstrates that defaunation is happening in North America simi-

larly to Europe. In landscapes comprising natural areas amid heavy human land-use, butterfly

total abundance is declining at 2% per year and 2–3 times more species have population trends

declining rather than increasing. Additional Pollard-based monitoring programs in North

America, listed in [9], will enable tracking insect trends over larger spatial extents as will efforts

to integrate data across European monitoring schemes [11]. The rates for other insect groups

may deviate from this baseline and were previously estimated to be declining more rapidly

than Lepidoptera [1]. Expanded monitoring and support for taxonomists are imperative for

other taxa and under sampled regions, like the Tropics where most insect diversity resides.

Besides the evaluation if butterfly trends generalize to other insects, the most urgent research

needs are understanding the causes of decline and testing mitigation strategies. As butterflies

are the best-monitored insect taxa, they are the best indicator of the baseline threat to the 5.5

million insect species, the most diverse group of animals on earth.
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