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Aggregate biodiversity data from museum specimens and community observations 
have promise for macroscale ecological analyses. Despite this, many groups are under-
sampled, and sampling is not homogeneous across space. Here we used butterflies, the 
best documented group of insects, to examine inventory completeness across North 
America. We separated digitally accessible butterfly records into those from natural 
history collections and burgeoning community science observations to determine if 
these data sources have differential spatio-taxonomic biases. When we combined all 
data, we found startling under-sampling in regions with the most dramatic trajectories 
of climate change and across biomes. We also used multiple methods with each sup-
porting the hypothesis that community science observations are filling more gaps in 
sampling but are more biased towards areas with the highest human footprint. Finally, 
we found that both types of occurrences have familial-level taxonomic completeness 
biases, in contrast to the hypothesis of less taxonomic bias in natural history collections 
data. These results suggest that higher inventory completeness, driven by rapid growth 
of community science observations, is partially offset by higher spatio-taxonomic 
biases. We use the findings here to provide recommendations on how to alleviate some 
of these gaps in the context of prioritizing global change research.

Keywords: butterflies, community science, GBIF, global change, North America, 
sampling bias

Introduction

The mobilization of openly and freely available digital data from natural history col-
lections has increased the ability for researchers to access information about species 
distribution and abundance in a given time and place. In recent years, these data have 
been augmented by community science programs which facilitate collection of bio-
diversity observations and digital vouchers from a network of volunteers. Aggregated 
occurrences from both natural history collections and community science programs 
have been used to answer broad questions in ecology, including assessing extinction 
risks for understudied groups (Carlson et al. 2017, Seppälä et al. 2018) and modeling 
species response to environmental change (Eskildsen et al. 2015, Soroye et al. 2020).
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Despite the utility of these occurrence records, many taxa 
are still under-sampled (Troudet et al. 2017) and prevalent 
biases in the spatiotemporal distribution of these data are 
noteworthy (Beck  et  al. 2013, Meyer  et  al. 2015). These 
biases imply that inventory completeness (how many species 
have been recorded versus how many are expected to occur) 
is also uneven across time and space. Given the urgency to 
understand ecological responses to many global change pro-
cesses, knowing where sampling has and has not occurred to a 
sufficient degree is critical for both prioritizing effort to close 
information gaps and choosing extents and scales for mac-
roecological analyses. The enormous growth of community 
science reporting for some groups promises to rapidly close 
inventory gaps, but it remains unclear how specimens from 
natural history collections and community science data may 
have their own biases. For instance, community science vol-
unteers may stay closer to developed areas to sample biodiver-
sity than collectors who may be more attentive to collecting 
in under-sampled regions. This may lead to larger under-
sampling by community scientists in remote regions, includ-
ing regions at high latitude, which are projected to experience 
the most dramatic effects of climate change. Under-sampling 
in the Arctic and other sparsely populated regions compro-
mises the ability to assess how climate has impacted com-
munities over time.

Butterflies (Lepidoptera: Papilionoideae) are a diverse 
group of organisms that are relatively less sampled com-
pared to vertebrate fauna (Troudet et al. 2017), which have 
been the focus on previous inventory completeness assess-
ments (Meyer et al. 2015). Although much less diverse than 
moths, butterflies are a charismatic group that attracts the 
attention of many professionals and hobbyists. Additionally, 
butterflies have been widely used to detect signals of global 
change (Parmesan et al. 1999, Eskildsen et al. 2015). Given 
the value of butterflies as an indicator group, we aim to test 
how well sampled North America is for butterflies using 
natural history collections and community science data, as 
gaps in openly accessible biodiversity data limit efforts to 
address ecological, evolutionary and conservation questions. 
More specifically, we utilize estimates of distributions from 
field guides to establish a baseline richness value at multi-
ple, coarse scales (Jetz  et  al. 2012). We then compare that 
value to richness derived from occurrence records from the 
Global Biodiversity Information Facility (GBIF), Integrated 
Digitized Biocollections (iDigBio) and eButterfly.

We distinguished occurrence records into those from nat-
ural history collections and from community science-based 
observations and examined temporal trends in the number 
of records and completeness for each. We then tested the 
hypothesis that both types of occurrences were biased to areas 
of higher human population density, but that those biases 
were particularly severe for community science records. We 
also examine if there are differences across butterfly families 
among these record types, hypothesizing that records from 
natural history collections are less likely to show taxonomic 
bias towards selected families. To provide further context for 
these results, we ask how biomes and climate regimes are 

sampled differently. Finally, we discuss potential strategies to 
mitigate under-sampling across the continent in the future.

Material and methods

Occurrence records from North America (Canada, Mexico 
and the United States) were obtained from GBIF (GBIF 
2020), iDigBio (Supporting information) (iDigBio 2020) 
and eButterfly (Prudic  et  al. 2017) from 1950 through 
2019. Range maps of species found in the United States 
and Canada were digitized from the Kaufman Field Guide 
to Butterflies of North America (Brock and Kaufman 2006). 
For species found in Mexico, range maps were digitized from 
‘A Swift Guide to Butterflies of Mexico and Central America’ 
(Glassberg 2018) as part of the ButterflyNet project, which are 
digitally available for visualization on Map of Life (Jetz et al. 
2012). These maps only include known source population 
locations and do not include distributions of strays. All range 
maps from the two sources were merged into a single shape-
file consisting of many spatial polygons, which were clipped 
to only terrestrial areas within North America. These range 
maps were then intersected with continent-wide equal area 
grids at 100, 200 and 400 km resolution. A species was con-
sidered to occupy a 100 km cell if its range passed within two 
km of the grid centroid and was considered to occupy a cell 
at coarser resolutions if its range intersected the grid cell irre-
spective of distance to the cell centroid. We used this cut-off 
for the 100 km cell range to increase the precision of a species 
being an actual occupant of the grid cell. Taxonomic names 
across the fishnet grids and occurrence data were harmonized 
to a single taxonomic list using R package taxotools (Barve 
2020) and the minority of names that could not be resolved 
manually after the process were discarded from the analysis 
(8.1% of names, many of which were genus only determina-
tions). We analyzed only occurrence records that fell within 
the boundaries of their species’ range map but recorded how 
many records fell outside of these boundaries over time to 
assess any potential temporal degradation of range maps. In 
order to address issues with identification quality in commu-
nity science records, we conducted an expert verification of 
five taxa from iNaturalist images in our dataset. Each iNatu-
ralist image of an adult butterfly was scored based on how 
strongly the expert agreed with the original identification. 
We also examined georeferenced locations for occurrence 
records, discarding records that did not fall within the ter-
restrial boundaries of North America and resolving unre-
ported geographic coordinates using a previously constructed 
gazetteer for occurrence data. The gazetteer was based on 
downloading all insect records in iDigBio (idigbio.org) and 
generating a list of unique localities with existing georefer-
ences. Next, we further lumped localities that differed only in 
capitalization and punctuation. We then checked non-geo-
referenced butterfly records for matches against this list. In 
cases with more than one georeference for a matching local-
ity, we chose a best-match based on whether the record had a 
reported uncertainty and based on precision. This approach 
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was a prototype for future efforts to speed georeferencing, 
with more formal approaches to be described in later work.

Inventory completeness was calculated as the ratio of 
species observed in occurrence data within a grid cell to the 
number of overlapping range maps within that grid cell. In 
some cases, due to range map exclusion along coastlines and 
because we only included species present in the fishnet if it 
occurred within 2 km of the grid centroid, this ratio was 
slightly higher than 1.0 and was thus floored to 1.0. We fil-
tered the occurrence data by the basis of the record, year and 
taxonomy attributes to examine how specimen-only (listed 
as preserved specimen or material sample from the ‘basisO-
fRecord’ field in Darwin Core), community observation-only 
(listed as human observations from the ‘basisOfRecord’ field 
in Darwin Core), time period and the taxon-rank of fam-
ily (which are monophyletic, Espeland et al. 2018) impacted 
completeness scores. Machine observations were a small frac-
tion of these data and were not included in the analysis.

Overall, average inventory completeness was assessed 
using a t-test. We then tested differences in average com-
pleteness among families using an ANOVA on the com-
bined, specimen and community observation datasets, and 
differences in the number of cells complete at or over 50% 
using a Chi-square test for families between specimen and 
observation based datasets. Post-hoc testing was conducted 
with Bonferroni correction in the case of Chi-square (Beasley 
and Schumacker 1995). We followed t-test, ANOVA, Chi-
square and other linear modelling approaches as outlined in 
Experimental design and data analysis for biologists (Quinn 
and Keough 2002).

We also assembled spatial data including velocity of cli-
mate under the representative concentration pathways 
(RCP) 4.5 and RCP 8.5 forecasts into the 2050s and 2080s 
(AdaptWest 2015); human footprint, representing areas 
where there are built environments, roads or converted land 
(Venter  et  al. 2016); protected regions (Dept of Forestry 
and Natural Resources, Clemson Univ. for CEC 2010); and 
biomes as designated by the World Wildlife Fund (WWF) 
(Olson et al. 2001). RCP forecasts examine the greenhouse 
gas concentration of the atmosphere given future scenarios 
in which RCP 4.5 represents a ‘intermediate’ scenario and 
RCP 8.5 represents a continuous rise in greenhouse gas emis-
sions (Pachauri et al. 2014). For human footprint and climate 
velocity, we calculated average values, and for protected areas, 
the percent coverage of those areas, within each 100 km grid 
cell. For biome type, we determined the proportion of each 
biome within each 100 km grid to calculate a weighted mean 
completeness value for each biome. We used these resampled 
values alongside the completion scores to identify drivers of 
inventory completeness and under-sampled regions described 
in more detail below.

Human footprint, protected areas and  
population density

For potential drivers of completeness, we considered human 
footprint and protected areas to each represent places where 

humans may be actively reporting butterfly occurrences, and 
specified separate linear models for the combined, museum 
specimen and community observation datasets as (i.e. inven-
tory completeness ~ human footprint + protected region cell 
coverage). We also ran these as two univariate models using 
either human footprint or protected areas as predictors. Model 
selection was then performed using AIC as the selection crite-
rion to determine the top model (Burnham et al. 2011). We 
compared selected model goodness of fit for natural history 
versus community science in order to assess the differential 
impact these factors may have on datasets with potentially 
different underlying observation strategies. Additionally, we 
sought to examine if completeness bias towards regions of 
high human population density is becoming stronger over 
time. To do this, we utilized human population density ras-
ters from 1950 to 2010 (Fang and Jawitz 2018), partitioned 
the original occurrence data by decade and ran a fixed-effects, 
three way interaction model to predict inventory complete-
ness by population density, decade and basis of record (i.e. 
inventory completeness ~ human population density × 
decade × basis of record). Unfortunately, these historical 
population raster data were only available for the United 
States, so these analyses are spatially restricted.

Sampling in projected novel climate regimes and 
biomes

Finally, we examined the inventory completeness within the 
cells alongside climate velocities from each RCP scenario and 
the inventory completeness across the WWF biomes found 
in North America. We removed from our analysis biomes 
for which the number of 100 × 100 km cells was less than 
10. This included just montane forests. We calculated the 
weighted mean completeness of each biome by considering 
the proportion of each cell occupied by the biome raster. All 
data preparation and analysis was performed in R ver. 3.6.3 
‘Holding the Windsock’ (<www.r-project.org>) using the 
packages tidyverse (Wickham 2019), sp (Pebesma and Bivand 
2005), sf (Pebesma 2018), raster (Hijmans 2020), data.table 
(Dowle and Srinivasan 2019), mapdata (Brownrigg 2018), 
maptools (Bivand and Lewin-Koh 2020), gridExtra (Auguie 
2017), stringr (Wickham  et  al. 2019), rgdal (Bivand  et  al. 
2020), ggforce (Pedersen 2019), exactextractr (Baston 2020), 
sjPlot (Lüdecke 2020), cowplot (Wilke 2019) and scales 
(Wickham and Seidel 2020). The scripts utilized here are 
available from a public GitHub repository at <https://github.
com/vmshirey/butterflySampling>. They are also available 
with our generated datasets via a Zenodo archive (<https://
doi.org/10.5281/zenodo.4354947>).

Results

We obtained approximately 2.8 million records from our 
aggregate GBIF, iDigBio and eButterfly datasets. Overall, 
91.2% of occurrence records across the entire dataset fell 
within range map delineations for their respective species. 



4

This has changed little over time with an average annual in-
range percentage of 88.6% from 1950 to 2019 and a recent 
increase within the last decade of sampling to 91.4% of 
observations being in-range. In addition, our expert analysis 
of iNaturalist identifications showed no pattern of consistent 
misidentification for our select taxa (Supporting informa-
tion). From 1950 to 2019, the ratio of cells sampled biyearly 
at 80% completeness by museum specimen data to those by 
community observations alone decreased dramatically, espe-
cially in the last decade of sampling with community-based 
completion becoming more prevalent as the number of com-
munity observations increases (Fig. 1).

Human footprint, protected areas and  
population density

In all cases, the best performing model to predict inven-
tory completeness according to AIC included human foot-
print alone without the percentage of protected natural areas 
(Table 1). For museum records, the variance explained by the 
model was low (R2 = 0.09) compared to the composite dataset 
(R2 = 0.25) and the community science dataset (R2 = 0.29).

Our three-way interaction model to examine spatial bias 
in inventory completeness demonstrated that the relationship 
between human population density and inventory complete-
ness is becoming stronger in recent decades for community 
observations, but that the opposite is true for specimen 
records (Fig. 2, Supporting information).

Geographic and taxonomic inventory completeness

Inventory completeness was spatially heterogeneous across 
scales with noticeable geographic gaps in the far north, mid-
west and northern Mexico as illustrated in Fig. 3. Mean 
specimen and observation-based completeness was sig-
nificantly different according to our t-test (−13.27, 2919 
DF, p < 0.0001), with observations having a higher aver-
age completion ratio (0.40 ± 0.007 SE to 0.27 ± 0.006 
SE). Sampling was also irregular across families, especially 
within the Lycaenidae. To illustrate this better, in the com-
posite dataset, differences among completeness across fami-
lies were significant according to ANOVA (F(4, 7267) = 51.49,  
p < 0.0001) (Supporting information) and ANOVA also 
supported significant differences across families for the speci-
men based (F(4, 5368) = 86.44, p < 0.0001) (Supporting infor-
mation) and observation based (F(4, 6325) = 44.72, p < 0.0001) 
(Supporting information) datasets (post-hoc test results in 
Supporting information). Chi-square tests to assess differ-
ences in the number of 100 × 100 km cells completed at 
50% (half of the species expected being reported) or more 
between specimens and observations revealed there is a signif-
icant association with family-level completeness and basis of 
record (χ2 = 31.04, 4 DF, p < 0.0001) (Supporting informa-
tion). Post hoc comparisons revealed that this association was 
significant for Nymphalidae and Pieridae with observations 
having more cells at 50% or more complete in these families 
(p < 0.01) (Supporting information).

Figure 1. (a) The number of museum specimens and community observation-based occurrence records over time, stacked by year. (b) 
Number of cells at 100 km resolution that are over 80% complete and that meet that threshold by museum or community observation data 
alone biyearly. Red = museum specimens; blue = community observations.
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Sampling in projected novel climate regimes and 
biomes

Sampling was most incomplete in regions experiencing high 
climate velocity under all four examined RCP scenarios, as 
illustrated in Fig. 4. In addition, sampling across biomes at 
the 100 × 100 km resolution was irregular, with some biomes 
being sampled on average more completely than others as 
illustrated in Fig. 5. Only the Mediterranean woodland/
scrub biome demonstrated over 80% inventory complete-
ness on average with notable under-sampling occurring in 
deserts, tropical and boreal/arctic regions. Moderate inven-
tory completeness (between 50% and 80% completeness on 

average) was demonstrated within most mid-latitude temper-
ate regions.

Discussion

Inventory completeness across North America has increased 
in recent years, driven strongly by the growing number of 
community observations generated from programs such as 
iNaturalist, which shares research grade observations with 
GBIF, and eButterfly (Fig. 1a). The majority of cells with > 
80% completeness are now derived from community science 
data, which has continued to grow each year over the past 

Table 1. Coefficient estimates of each multiple regression model for the full record set, specimen-only record set and community observation 
record set predicting inventory completeness from human footprint and protected areas (e.g. inventory completeness ~ human foot-
print + protected areas). Delta-AIC values indicate the difference between the multiple regression and simple regression model which 
included only human footprint as a predictor variable. In all cases, models excluding protected area percentage outperformed the simple 
regression according to AIC.

Estimate 95% CI SE t p-value R2 Delta-AIC

All records 0.25 1327.03
 Intercept 0.354 0.337–0.370 0.0083 42.63 < 0.0001
 Human footprint 0.027 0.025–0.029 0.0011 23.92 < 0.0001
Specimens 0.09 1160.43
 Intercept 0.194 0.176–0.211 0.0089 21.57 < 0.0001
 Human footprint 0.014 0.011–0.016 0.0012 12.14 < 0.0001
Observations 0.29 1144.99
 Intercept 0.238 0.221–0.256 0.0088 26.96 < 0.0001
 Human footprint 0.028 0.026–0.030 0.0011 24.79 < 0.0001

Figure 2. Results of our three-way interaction model for inventory completeness by human population density, decade and basis of record 
(e.g. inventory completeness ~ human population density × decade × basis of record). Colors indicate the decade of sampling for each 
record time (specimen records versus community observations). Results indicate that the influence of human population density is becom-
ing stronger for community observations and less strong for specimen records.
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10 years (Fig. 1b), demonstrating the importance of these 
data for closing distribution knowledge gaps. A large volume 
of community science observations may be due to the ease 
of submission and a rather agnostic sampling protocol. For 
example, iNaturalist submissions can be completed by simply 
taking a photograph on a mobile phone. Networks such as 
eButterfly often appeal more directly to dedicated lepidopter-
ists of various skill levels, and do not require photo vouchers 

to publish data, which has the potential to allow for more 
observations of butterfly species that are difficult to photo-
graph. This is in contrast to specimen-based data in which 
preparation, curation and digitization are all required steps to 
publish occurrence data.

Despite this influx of community science data, sampling 
is still heterogeneous across space and taxonomy (Fig. 3, 
Supporting information). Regions with low human footprint 

Figure 3. Inventory completeness within cells of varying spatial resolution (100, 200, 400 km) across North America from 1950 to 2019 
based on record source (a) all records, (b) specimens and (c) community observations. Projection is North American Albers, Equal  
Area Conic.
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are frequently under-sampled or not sampled at all, and our 
simple model validates this finding alongside other studies 
that have examined the relationship between human popula-
tion densities and record densities (Girardello  et  al. 2019). 
A key finding is that these biases towards sampling where 
human infrastructure is most developed are stronger for com-
munity observation data than for specimens (Table 1). Thus, 
community science observations are not likely to be a pana-
cea for closing inventory gaps. Indeed, our analysis of the 
relationship between human population density and inven-
tory completeness over time revealed that community science 
driven completeness is becoming increasingly associated with 
regions of higher human population densities (Fig. 3). We 
suspect that the development of agnostic, community science 

projects such as iNaturalist have driven this trend as people 
are probably more likely to be engaged with their immedi-
ate surroundings. Surprisingly, the opposite trend was found 
for museum specimen records, with inventory completeness 
seeming to be less associated with human population densi-
ties over time (although they are still spatially biased towards 
areas of high human population density). This result may 
suggest that scientific butterfly collectors are increasingly 
focusing collecting efforts in areas outside of metropolitan 
centers.

While some areas of North America are likely to be inven-
toried at increasingly finer spatial grain with burgeoning 
growth of community science data, other areas may remain 
perniciously under-sampled. This likely continuing butterfly 

Figure 4. Intensity of sampling gaps versus intensity of climate velocity under four scenarios: (a) RCP 4.5 into the 2050s, (b) RCP 4.5 into 
the 2080s, (c) RCP 8.5 into the 2050s and (d) RCP 8.5 into the 2080s. Darker colors indicate both high climate velocity and increased 
sampling gaps. Climate velocity rasters do not extend into northern Nunavut for some forecasts and climate velocity colors are relative to 
each individual RCP scenario. Projection is North American Albers, Equal Area Conic.
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inventory knowledge gap in remote regions is thus both par-
ticularly challenging and crucial to overcome since these are 
exactly the areas forecasted to experience the most climatic 
change. In the polar/subpolar regions of North America, cli-
mate velocities are particularly high, yet sampling is woefully 
incomplete (Fig. 4). Even more concerning is that regardless 
of RCP scenario or timeline, these northern regions remain 
consistently at the most extreme climate velocity classifica-
tion. As well, even some mid and low-latitude biomes are 
under-sampled, including deserts and many tropical biomes 
in which butterfly diversity is extremely high (Willig  et  al. 
2003) (Fig. 5). We argue that community science alone is 
unlikely to solve existing gaps in biodiversity monitoring 
unless those programs are directed into sparsely populated 
regions through socially responsible excursions or other 
research campaigns that consult with local stakeholders and 
Indigenous communities. These directed and collaborative 
efforts, requiring partnerships and coordination, will help to 
provide a critical basis for mapping and ultimately monitor-
ing butterfly diversity to detect changes in the face of shifting 
climate regimes.

We had anticipated that traits that make butterflies eas-
ier to detect, photograph and identify might be different 
across butterfly families, thus leading to familial-level biases 
in completeness. We expected these biases to be more acute 
for community scientists, compared to professional collec-
tors. This is not to say that community scientists are not 
experts in their own right (as certainly, many are), but that 
data from community science programs may be biased differ-
ently than those from museum collections based on observa-
tion and reporting strategies. We demonstrated preliminary 
evidence for one form of reduced spatial biasin natural 

history specimen collecting, which might also suggest sam-
pling across more habitats, potentially reducing taxonomic 
biases. In the composite dataset, Lycaenidae exhibit lower 
average completeness with most other groups differing from 
each other as well (Supporting information), supporting our 
hypothesis of taxonomic biases in completeness. However, 
we did not find evidence that natural history specimen col-
lecting led to less taxonomically biased sampling, at least at 
the familial level. We did, however, find that completeness 
from community science observations was higher compared 
to natural history specimen records only for nymphalids and 
pierids and not for other butterfly families. We had instead 
anticipated either similar trends across taxonomic groups, or 
that showy families such as the swallowtail butterflies (i.e. 
Papilionidae) were more likely to be biased in favor of com-
munity science observations given they are generally colorful, 
large and charismatic. Further exploration using species-level 
trait data to tease apart these patterns is warranted. In par-
ticular, species-level rarity may be particularly important, 
especially if phylogenetically conserved. Other traits that 
may be worth examining include habitat and flight prefer-
ences (canopy versus understory fliers) that directly relate to 
ease of human observation. For example, canopy fliers, like 
many species in Papilionidae, may be difficult for community 
scientists to photograph, whereas high relative abundance as 
exhibited by Pieris rapae, may make photography and report-
ing much easier. Species with cryptic coloration such as 
members of the genus Oeneis may be difficult to detect in 
situ and as fast fliers, also difficult to photograph. Further, 
species that are hard to identify such as members of the genus 
Speyeria may dissuade community scientists from reporting 
(Riva et al. 2020).

Figure 5. Weighted mean ± SD inventory completeness across WWF biomes, (a) composite dataset, (b) community observations only and 
(c) museum specimens only. Panel (d) displays the biomes utilized without delineation for clarity and includes coloration based on average 
composite inventory completeness. Red = sampling below 50% average completeness, yellow = sampling average between 50% and 80% 
completeness, green = sampling average at or above 80% completeness.
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Comparisons with prior work and recommendations

In comparison to similar work conducted on other taxa, our 
results show a consistent pattern of records being generally 
biased towards human population and infrastructure and 
with oversampling of rare or targeted species in many cases 
(Girardello et al. 2019, Haque et al. 2020). With respect to 
butterflies, our study expands upon prior work done specifi-
cally on butterfly inventory completeness (Girardello  et  al. 
2019) by including an independent baseline richness via 
digitized maps at coarse resolution and by examining the 
contributions of specimens and community observations. 
Girardello et al. (2019) utilized species accumulation curves 
(SACs) which estimate the expected species richness in a 
given area based on repeated sampling. In this previous study, 
they utilized the slope of the last 10% of the SAC to estimate 
saturation in complete sampling. SAC construction relies on 
an estimate of the size of the species pool based on sampling, 
which is not repeated in opportunistic data. By establishing a 
hard boundary on how many species we expected to occur via 
range map overlap, we removed this estimation process from 
our approach. One caveat to our use of range maps from pub-
lished literature is that, in some cases, range maps are partially 
based on museum specimen data as well as other books and 
personal experience and thus may be over or under-gener-
alized. However, we believe these results still hold merit by 
focusing on North America and by including an assessment 
of inventory completeness in regions with high climate veloc-
ity and across biomes, we can better assess which areas are in 
need of targeted sampling in the future. Specifically, and in 
contrast to previous work (Girardello et al. 2019), we found a 
severe lack of sampling in the most northern regions of North 
America. This urgency to sample the north is further sup-
ported by the stark reality that these regions are also experi-
encing the most drastic impacts of climate change (Manabe 
and Stouffer 1980, Gauthier  et  al. 2015). Additionally, 
at more coarse spatial resolutions (200 and 400 km), our 
results do diverge from those of Girardello  et  al. (2019) 
which illustrate more completeness in high latitude region 
of North America. This is likely because the species pool in 
these regions is smaller, which leads to a quicker SAC asymp-
tote with fewer species observations. Different approaches 
to SAC construction have been shown to produce different 
estimates in completeness (Pelayo-Villamil et al. 2018), and 
completeness is also influenced by spatial scale (Lobo et al. 
2018). By setting a hard boundary on expected species rich-
ness using range maps, our study avoids this potential pitfall. 
It is worth noting that while we tested and found no evidence 
for the temporal degradation of our range maps, range maps 
are ultimately just one source of expert knowledge regarding 
distributions (Jetz  et  al. 2012). Despite this, our approach 
of comparing observed versus expected species richness has 
revealed similar patterns at the 100 km scale to previous work, 
and critical regions of under-sampling across the continent.

Overall, several key regions should be prioritized for 
sampling including: (a) tundra and boreal forest, (b) tropi-
cal forests and (c) deserts. Given the relatively low human 

population densities of these regions, funding directed 
towards establishing community science initiatives, and part-
nerships among organizations with interests in butterfly mon-
itoring, will likely be critical alongside complementing these 
initiatives with specimen collection and focal digitization of 
records in these regions. It will be important to target regions 
with low inventory completeness through an approach that 
integrates knowledge about species specific environmental 
requirements to either confirm or deny a species presence in 
each locality. Species distribution and occupancy models will 
be a crucial tool for discerning where these unverified occur-
rences may be found (Fois et al. 2018).

Conclusions

Butterfly inventory completeness is not uniform across North 
America. Our research has revealed continued under-sam-
pling in regions facing threats from climate change as well as 
within specific biomes across the continent. These biases are 
becoming stronger overtime as community science observa-
tions are increasingly being recorded in areas with high human 
population density. Additionally, family level differences in 
inventory completeness may be driven by species traits and 
abundance, leading to disparities in completeness across taxa. 
In order to mitigate some of these biases, attention should be 
drawn towards establishing community partnerships of both 
opportunistic and structured survey systems in under-sampled 
regions. It is clear that community science provides a strong 
mechanism for alleviating sampling shortfalls and has poten-
tial to provide finer-grained views of butterfly communities, 
but only if such initiatives are also directed farther from regions 
with the densest human populations and transport infrastruc-
ture. Furthermore, additional curation and digitization of 
museum specimens will be critical in developing a historical 
backbone for analyses across time and space. Millions of speci-
mens still remain undigitized in arthropod natural history col-
lections (Cobb et al. 2019), and the continuation of funding 
for museum staff and biodiversity informatics infrastructure 
will be critical in mobilizing these data needed for ecological 
research, especially for some kinds of temporal trend analy-
ses (Soroye et al. 2020). Still, continued digitization in some 
regions has shown that well-sampled areas remain consistently 
well-sampled with the addition of new data, rather than con-
tributing to under-sampled regions (Stropp et al. 2016, 2020). 
However, collections are broadening in their scope of which 
research communities they serve, and repeat sampling of spe-
cies in the same area is helpful for certain research questions 
aside from inventory completeness assessments. Supporting 
digitization in tandem with concerted efforts to direct commu-
nity science and collection initiatives towards under-sampled 
regions specifically will move us towards unlocking the full 
potential of these opportunistic data in an era of global change.
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