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Abstract: Species’ range maps based on expert opinion are a critical resource for conservation planning. Expert
maps are usually accompanied by species descriptions that specify sources of internal range heterogeneity, such
as habitat associations, but these are rarely considered when using expert maps for analyses. We developed a
quantitative metric (expert score) to evaluate the agreement between an expert map and a habitat probability
surface obtained from a species distribution model. This method rewards both the avoidance of unsuitable sites
and the inclusion of suitable sites in the expert map. We obtained expert maps of 330 butterfly species from
each of 2 widely used North American sources (Glassberg [1999, 2001] and Scott [1986]) and computed species-
wise expert scores for each. Overall, the Glassberg maps secured higher expert scores than Scott (0.61 and 0.41,
respectively) due to the specific rules (e.g., Glassberg only included regions where the species was known to
reproduce whereas Scott included all areas a species expanded to each year) they used to include or exclude
areas from ranges. The predictive performance of expert maps was almost always hampered by the inclusion of
unsuitable sites, rather than by exclusion of suitable sites (deviance outside of expert maps was extremely low).
Map topology was the primary predictor of expert performance rather than any factor related to species charac-
teristics such as mobility. Given the heterogeneity and discontinuity of suitable landscapes, expert maps drawn
with more detail are more likely to agree with species distribution models and thus minimize both commission
and omission errors.

Keywords: concavity, detailed edge, distribution models, expert agreement, expert score, Glassberg, inhomo-
geneous Poisson point process, map porosity, Scott, species

Concordancia entre los Mapas de Extensión Realizados por Expertos y las Predicciones de los Modelos de Dis-
tribución de Especies

Resumen: Los mapas de extensión de especies basados en la opinión de expertos son un recurso de suma impor-
tancia para la planeación de la conservación. Los mapas realizados por expertos generalmente van acompañados
de las descripciones de las especies que detallan el origen de la heterogeneidad interna de la distribución, como las
asociaciones entre hábitats, pero rara vez se consideran estas descripciones cuando se usan los mapas de expertos
para un análisis. Desarrollamos una medida cuantitativa (puntaje de expertos) para evaluar la concordancia entre
un mapa realizado por expertos y una superficie probable de hábitat obtenida a partir del modelo de distribución
de especies (SDM). Este método recompensa tanto a la evasión de sitios inadecuados como a la inclusión de sitios
adecuados en el mapa realizado por expertos. Obtuvimos los mapas realizados por expertos para 330 especies de
mariposas a partir de dos fuentes norteamericanas usadas ampliamente (Glassberg [1999, 2001] y Scott [1986])
y calculamos los puntajes de expertos, hablando de cada especie, para cada mapa. En general, los mapas de
Glassberg aseguraron puntajes de expertos más altos que los de Scott (0.61 y 0.41 respectivamente) debido a las
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reglas específicas (p. ej., Glassberg sólo incluyó las regiones en donde es sabido que la especie se reproduce,
mientras que Scott incluyó todas las áreas a las que la especie se expandió cada año) que cada una usa para
incluir o excluir áreas de las distribuciones. El desempeño pronosticado de los mapas realizados por expertos casi
siempre se vio afectado por la inclusión de los sitios inadecuados, en lugar de estar afectado por la exclusión de
sitios adecuados (la desviación fuera de los mapas realizados por expertos fue extremadamente baja). La topología
del mapa fue el indicador primario del desempeño de los expertos en lugar de cualquier factor relacionado con
las características de la especie, como la movilidad. Dada la heterogeneidad y la discontinuidad de los paisajes
adecuados, los mapas realizados por expertos dibujados con mayor detalle tienen una mayor probabilidad de
concordar con los SMD y por lo tanto minimizar los errores de comisión y de omisión.

Palabras Clave: acuerdo entre expertos, borde detallado, concavidad, Glassberg, modelos de distribución de
especies, proceso de punto de Poisson no homogéneo, porosidad de mapa, puntaje de expertos, Scott
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Introduction

Data on species’ distributions are critical to conservation
planning, predicting responses to climate change and
public health (Parmesan 1996, 2006; Dawson et al. 2011;
Mainali et al. 2015; Merow et al. 2017). Historically, a key
source of such distributional data has been expert-drawn
range maps, which set boundaries on species’ likely oc-
currences. Expert maps, which are developed for in-
dividual species based on a combination of distribution
data and the collected experience and knowledge of nat-
uralists, scholars, and others, delineate the geographical
region in which a species is believed to occur (Hurlburt
& Jetz 2007; Merow et al. 2017). As such, expert maps,
which are available for thousands of species across di-
verse taxa, predict the binary state of species distribu-
tions as occupied or unoccupied, usually with a fairly
coarse grain.

The utility of these maps ultimately depends on accu-
racy, but defining accuracy is difficult because the true
distribution of a species cannot be known. When draw-
ing maps, experts generally delineate a single region that
includes the entire species range. This is done because
any occupied areas falling outside of the delineated range
clearly diminish map credibility (Hurlbert & White 2005;
Hurlbert & Jetz 2007; Merow et al. 2017). Because of
this emphasis on avoiding omission errors (false nega-
tives), expert maps appear particularly good for delineat-
ing range edges beyond which a species is unlikely to
occur (Jetz et al. 2012; Domisch et al. 2016). For birds,

the boundaries of expert maps were reasonably accurate
at 100–200 km resolution (Hurlbert & White 2005; Hurl-
bert & Jetz 2007; Merow et al. 2017), but predicted many
false presences at finer resolutions (Hurlbert & White
2005; Hurlbert & Jetz 2007).

Expert maps are often used to identify biodiversity
hotspots for conservation (Hurlbert & Jetz 2007) or es-
timate species richness (Hurlbert & White 2005). In
such cases, multiple expert maps are stacked to obtain
multispecies measures. Yet, expert maps have tradition-
ally been developed specifically to accompany individual
species accounts. Indeed, most expert-drawn maps are
supplemented by written species accounts that include
ecological trait data such as habitat or elevational asso-
ciations. This information, which is not included in the
maps, makes it possible for readers to infer the internal
heterogeneity of plotted species ranges.

Species distribution models (SDMs) provide an
alternative to expert maps. Typically, SDMs are based on
occurrence data and then interpolated and extrapolated
to account for areas in which species may not have
been seen, but are likely to occur due to a combination
of environmental variables that correlate with known
occurrences (Guisan & Thuiller 2005; Elith & Leathwick
2009). An SDM usually features fine spatial resolution
and therefore captures fine-grained heterogeneity of
species ranges in ways that expert maps rarely do.
Recent efforts leverage both expert maps and point data
to improve SDMs (Domisch et al. 2016; Merow et al.
2017).
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Because much conservation activity hinges on species
ranges, metrics must be developed for assessing the ac-
curacy of maps, whether expert-drawn or implemented
from statistical models. One way to judge the accuracy
of expert maps is to compare them with each other, but
we are not aware of any researchers who have done this.
One challenge to this approach is that with no indepen-
dent reason to prefer one over the other it becomes dif-
ficult to ascertain what conclusions to draw about the
relative value of competing maps. A neutral benchmark
provides a means of determining map quality. Although
SDMs have several shortcomings (Kramer-Schadt et al.
2013; Yackulic et al. 2013; Gomes et al. 2018), they are
transparent, repeatable, and optimizable for particular
purposes (e.g., by adjusting weights on commission vs.
omission errors). We developed a metric that compares
competing expert maps against carefully trained SDMs.
Although we used SDMs as a benchmark for compari-
son, we do not suggest they represent truth. Instead,
we devised an analytical way to use these SDMs as a
neutral arbiter to evaluate range information when mul-
tiple expert-drawn maps are available and a framework
for understanding and judging map value. We explored
this analytical framework with North-American butterfly
maps.

Methods

Map Development

We obtained digitized expert ranges of American but-
terfly species from 2 sources. James Scott (1986) pub-
lished range maps after studying butterflies for 25 years.
He reviewed several hundred references and consulted
with over 100 experts. In drawing these ranges, Scott
reported summer (where adult butterflies may be seen,
even if they do not reproduce) and winter ranges (where
the species are known to overwinter). The union of a
species’ summer and winter ranges constituted its expert
range here. We obtained digitized ranges for 541 species
from Scott (1986) via the Map of Life project. Hereafter,
this set of expert maps is referred to as Scott.

The second expert source comprised maps originally
published in two books by Jeffrey Glassberg (1999, 2001)
and subsequently updated by Glassberg. Based on pub-
lished and unpublished literature, Glassberg created draft
ranges by including places where butterflies regularly fly
and produce at least 1 brood before dying back. Glass-
berg mapped the regions with 1, 2, or >2 broods. Thus,
unlike Scott, if a species expanded its summer range but
did not reproduce in those areas, those were not in-
cluded in the range map, but rather denoted as strays
and excluded from our analysis. The union of all these
brood regions constituted the species range and repre-
sented areas where a species was known to reproduce,

even if it did not overwinter. These draft ranges were
then reviewed by 85 experts before Glassberg finalized
the ranges. In 2014, we obtained digitized expert ranges
of 659 butterfly species from this source, hereafter, re-
ferred to as Glassberg.

To provide a baseline for our analyses of expert
maps, we sought occurrence records for American but-
terfly species and located 478,200 occurrence records
from the North-American Butterfly Association, 46,904
records from Butterflies and Moths of North America,
and 137,431 records from Global Biodiversity Informa-
tion Facility. To define the study area for each species,
we first created an alpha hull (α = 8°), a generalization
of the convex hull (Burgman & Fox 2003), around a
species’ occurrence records to eliminate highly distant,
isolated records. Second, we created a convex hull rep-
resenting the spatial union of the alpha hull based on
species occurrences and the two expert maps for that
species. Third, we clipped the resulting convex hull by
the boundary of land mass of the contiguous United
States to obtain the study area (denoted S) of the species.
Defined in this way, the study area for a species rep-
resented the spatial union of all relevant data sets. We
developed SDMs for each butterfly species with the in-
homogeneous Poisson point process (IPP) distribution
approach (e.g., Warton & Shepherd 2010). Ultimately, we
analyzed ranges for 330 species, after excluding species
based on how much of their range was included in our
main study area or because of conflicting taxonomy. We
also ran the analysis separately for species whose ranges
were 100% within our primary study area. See Support-
ing Information for details and rationale for SDM method
and which species were included in analyses.

Measuring Agreement Among Maps

We assumed each expert map was generated from a bi-
nary process, such that, within any subregion of the
study area, the species were either present (y = 1) or
absent (y = 0). To determine how close the expert maps
agreed with the SDM predictions, we relied on the no-
tion of a scoring rule for evaluating the accuracy of pre-
dictions of binary events (Table 1 in Gneiting & Raftery
2007). Because the IPP implies a Bernoulli distribution
for occurrences, we used a proper scoring rule to ap-
propriately match our SDM with the procedures used
to evaluate the predictive accuracy of the expert maps
(Cressie & Wikle 2015; Gneiting & Raferty 2007; Hefley
& Hooten 2016). For a scoring rule, we used

l (yj, pj ) = −2log
[
pj

yj (1 − pj )
1−y j

]
, (1)

where yj is equal to 1 if a map indicates that the jth
small geographic area Aj is occupied and 0 if the map
indicates Aj is unoccupied, and pj is the probability of
occurrence in Aj . For a given species, the overall score
for the study area is calculated by summing each l (yj, pj )
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Table 1. Potential predictors of expert score, a quantitative metric developed to evaluate the agreement between an expert map and a habitat probability
surface obtained from a species distribution model, and predictors of expert agreement, the fraction of the union of 2 expert maps that is common.

Predictor and measure Definition and level of categorical variable

Attributes of expert opinion mapsa

Polsby-Popper index (range 0 to 1) Ratio of the area of the map to the area of a circle whose circumference is equal
to the perimeter of the map (Cox 1927)

Convex hull score (range 0 to 1) Ratio of the area of a map to the area of the minimum convex polygon that
encloses the map

Detailed edge (range 0 to ∞) Ratio of the area of a map to its edge length
Attributes of occurrence-based maps

Number of occurrence points Total number of occurrence records in the study area (as defined in Methods)
Moran’s I (range –1 to 1) Spatial heterogeneity of occurrences in the study area; score of the map is 1 for

perfect clustering of similar values, 0 for perfect randomness, and –1 for
perfect clustering of dissimilar values

Average density of occurrence points
(count/10,000 km2)

Butterfly life-history traitsb

Mobility Local, migratory, or mass migration
Habitat breadth Generalist: associated with many specific ecotypes (e.g., fields, meadows,

prairies, and pastures), although they may have particular canopy
requirements (e.g., no canopy rather than closed forest); specialist: associated
with specific ecotypes (e.g., tall-grass prairies); narrow: narrow but not
specialized habitat associations

Host plant One genus of plants; few (≤5) species of a plant family; many species of a plant
family; few species of several plant families; many species of several plant
families; dead plant tissue

Taxonomic family
Oviposition Single, cluster, or both
Overwintering state Egg, larvae, pupa, or adult
Voltinism Univoltine (obligate 1 flight/year), bivoltine (obligate 2 flights/year), or

multivoltine (1 to many flights depending on length of season)
Local abundance Common, uncommon, or irruptive
Distribution Local: generally found in localized sites; widespread: could be found anywhere

within the canopy, habitat, and range of the species; stray: not known to breed
in the area or be a regular migrant to the area; individuals seen only sporadically

Average wing span
Wing span range Maximum wingspan minus minimum wingspan

aPerimeter and area of map measured on an ellipsoid representation of Earth in kilometers and square kilometers, respectively.
bAll predictors categorical except Average wing span.

across J nonoverlapping Aj ’s that fully partition the study

area S. The expert’s score is calculated as
∑J

j = 1 l (yj, pj )

for the set S = ∪J
j=1 Aj .

Other types of scoring rules could be used instead of
Eq. 1. For example, area under the curve (AUC) is widely
used in ecology, but this scoring rule is not proper (i.e., it
is possible to find better AUC scores when the estimated
probabilities of occurrence differ from the true probabil-
ities of occurrence) (Byrne 2016). Proper scoring rules
like Eq. 1 ensure that the best value of the scoring rule is
achieved when the estimated probabilities of occurrence
match the true values (Byrne 2016).

We used the results of the SDM as an independent ar-
biter of truth without assuming that it necessarily out-
performs either expert map. We restricted our models to
regions in which occurrence is highly probable, and this
greatly lessened the typical SDM problem of finding the
true area of occurrence.

Although useful, the score produced by Eq. 1 depends
on how the Ajs are chosen to partition the study area

S. That is, the map’s score,
∑J

j = 1 l (yj, pj ), depends on
grid resolution, which is arbitrary. We set the grid reso-
lution at 10 arc minutes. Because the SDM provides pre-
dictions in continuous geographic space, we needed to
define the continuous analog of the occupancy probabil-
ity as

p(s) = lim
|A|→0

1 − e−λ̄, (2)

where λ̄ = ∫
A λ(s)ds, s is a vector of coordinates and λ(s)

is an IPP estimated intensity function the log of which is
specified as a linear combination of location-specific co-
variates of species distribution (Supporting Information).

Likewise, a map is a binary process that exists in con-
tinuous geographic space, such that at any point, the
map indicates that the species is present, y(s) = 1, or
absent, y(s) = 0. With spatially continuous specifica-
tions of y(s) and p(s), the map’s score is calculated as

E
{
l
[
y(s), p(s)

]} =
∫

S

l
[
y(s), p(s)

]
ds, (3)
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which we refer to as the deviance. This deviance
measures how close each expert’s map is to the
intensity function from the SDM built from the occur-
rence records for that species. However, because this
measure in Eq. 3 is defined in continuous geographic
space, it is no longer sensitive to an arbitrary choice
of how the study area S is partitioned. In practice, the
integral in Eq. 3 is evaluated using a numerical quadra-
ture approximation (Givens & Hoeting 2012). Further-
more, p(s) is a function of λ(s), which must be estimated
from the occurrence records. Thus, the deviance is esti-
mated by plugging in the estimated value λ̂(s) in place
of λ(s).

Because the deviance in Eq. 3 is a relative measure, we
needed a null map to characterize the predictive value of
expert maps. We defined the null map for a species as
that which covers the entire study area S (Fig. 1a). We
propose a deviance-explained metric as

expert score = 1 − E
{
l
[
y(s), p(s)

]}
E

{
l
[
z(s), p(s)

]} , (4)

where E{l[y(s), p(s)]} is the deviance given the expert’s
map (i.e., y(s)) and E{l[z(s), p(s)]} is the deviance given
the null map (i.e., z(s)). The expert score has an inter-
pretation similar to the familiar coefficient of determi-
nation from simple linear regression or the more general
pseudocoefficient of determination for generalized linear
models. For example, when the expert score equals 0,
the expert map has predictive accuracy equal to that of
the null map. A higher expert score indicates a closer
match of expert map with highly suitable sites. Expert
score can be negative when an expert map has less pre-
dictive accuracy than the null map.

The deviance in Eq. 3 can be decomposed to repre-
sent the contribution to the deviance score due to omis-
sion and commission errors. More specifically, for any
expert map, the study area S can be partitioned into two
disjointed sets, S = I ∪ O, where I is the area inside
the expert’s map and O is the area outside the expert’s
map but within S. With this partition, the integral in
Eq. 3 is

E
{
l
[
y(s), p(s)

]} =
∫

I

l
[
y(s), p(s)

]
ds

+
∫

O

l
[
y(s), p(s)

]
ds. (5)

The first term on the right side of Eq. 5 is the deviance
inside the expert map, which, when scaled by the null
deviance, quantifies commission error (error of predict-
ing unsuitable landscape as part the expert map). Simi-
larly, the second term on the right side in Eq. 5 is the
deviance outside the expert map, which, when scaled
by the null deviance, quantifies omission error (error of

predicting suitable landscape outside the expert map).
Thus, this decomposition in Eq. 5 results in a natural in-
terpretation of the expert score as [1 – (scaled deviance
inside + scaled deviance outside)].

Glassberg and Scott used different ecological phe-
nomenon to define their ranges. Therefore, we did not
expect them to match exactly even if they both could
be assumed to represent truth as they defined it. Nev-
ertheless, we believed it was useful to directly com-
pare the overlap in the two maps, especially because
expert maps are often used without regard to the spe-
cific rules used to generate them. For each species,
we quantified agreement between the two expert maps
as:

expert agreement = area of the intersection

area of the union
(6)

This measure scales from 0 (complete disagreement
between corresponding expert maps) to 1 (complete
agreement). Next, we used three groups of explana-
tory variables to predict expert score (defined in Eq. 4)
in each of the 2 sources of expert maps and to pre-
dict expert agreement between 2 expert maps. Specif-
ically, we considered expert map geometry (3 predic-
tors), occurrence records geometry (3 predictors), and
life-history and ecological traits of butterfly species (11
predictors) (details in Table 1). Predictors related to ex-
pert map attributes and to occurrence records were cal-
culated directly from the expert maps and the occur-
rence data, respectively. Predictors related to life-history
and ecological traits were compiled from Scott (1986),
Opler and Malikul (1992), Bird (1995), Glassberg (1999),
Opler (1999), Daniels (2003), and Bouseman et al.
(2006).

We used multimodel inference (Anderson & Burnham
2004; Burnham & Anderson 2004) to quantify the utility
of these three groups of variables as significant predic-
tors of expert score and, separately, of expert agreement.
For each of the 3 groups of predictors, we exhaustively
examined the performance of all possible main effects
models built from the combinations of predictors in that
group. For example, we had 7 main effects models for
expert map geometry (three models with individual pre-
dictors plus three bivariate models plus a model with all
three predictors). Each of these models was assigned a
probability based on the Akaike Information Criterion
(AICc) corrected for small sample sizes, such that the
summed probability of the models was 1 (Buckland et al.
1997; Calcagno & de Mazancourt 2010). A predictor was
deemed important if the sum of the probability of all
models that included that parameter was ≥0.8 (Calcagno
& de Mazancourt 2010). We then created a linear model
with the important predictors from the map geometry
group.

We repeated the method for the groups of predictors
related to occurrence records (7 models) and life-history

Conservation Biology
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Figure 1. Butterfly distributional data and expert score (Eq. 4) reflecting the performance of 2 sources of experts’
range maps compared with the (continuous) probability of occupancy, p(s) (value close to 1, strong agreement
between expert range and species distribution modeling predictions; value close to 0, no ability to differentiate
suitable landscape from unsuitable). For Achalarus lyciades (a) expert range maps from Scott and Glassberg and
occurrence records from North American Butterfly Association, Butterflies and Moths of North America, and
Global Biodiversity Information Facility and (b) predicted habitat suitability based on species distribution models
relative to expert maps (legend shows habitat suitability range) (1, high quality habitat). (c) Scott and Glassberg
expert scores for 330 species in the study. (d) Glassberg expert score relative to Scott expert score for all 330 species.

and ecological traits (2047 models) and identified im-
portant predictors in each of these groups. Eventually,
we created models with important predictors from more
than one group. For each of these models, we report
goodness of fit as adjusted R2.

Data analyses and plotting were performed in R ×
64 3.5.1 (R Project for Statistical Computing) with

the following libraries: gbm (for the main analysis
of SDM), raster, maptools, maps, rgdal, geosphere,
rgeos, scales, alphahull, sp, rgbif, plyr, mandeR, spa-
tialEco, Hmisc, glmulti, magrittr, DT, htmlwidgets, gg-
plot2, officer, flextable, jtools, venneuler, and cvAUC.
We developed an R package called expertscore for
computing the metric we developed; the library
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Table 2. Significant predictors of expert score and expert agreement.
∗

Dependent variable

Glassberg expert score Scott expert score Glassberg–Scott agreement

Predictors All species
Nontruncated

species All species
Nontruncated

species All species
Nontruncated

species

Attributes of expert opinion maps
Polsby-Popper index Yes Yes Yes Yes Excluded Excluded
Convex hull score Yes Yes Yes Yes Excluded Excluded
Detailed edge Yes Yes Yes Excluded Excluded
Adjusted R2 0.57 0.57 0.48 0.44

Attributes of occurrence-based maps
Number of occurrence points Yes Yes Yes Yes Yes
Moran’s I Yes Yes Yes Yes
Average density of occurrence
points

Yes Yes

Adjusted R2 0.23 0.20 0.08 0 0.30 0.45

Life-history traits of butterfly
Mobility Yes
Habitat breadth Yes
Host plant use Yes
Taxonomic family Yes
Oviposition
Overwintering state Yes Yes
Voltinism Yes Yes Yes
Local abundance
Distribution
Average wing span
Wing span range
Adjusted r2 0.12 0 0.04 0 0.29 0.58

∗
Yes indicates significant predictors of each of the dependent variables. Significant predictors identified separately for each of the following 3

groups of predictors: attributes of expert opinion maps, attributes of occurrence-based maps, and life-history traits of the butterfly. The explained
variance is reported separately for the 3 groups of predictors (also shown in Fig. 2a,b). Overall model fits, which draw on all groups of predictors,
are in Fig. 2a,b. excluded indicates predictors excluded by the structure of particular analyses. Attributes of Glassberg map are excluded as
predictors of Scott map and vice versa.

can be downloaded from https://github.com/kpmainali/
expertscore.

Results

Distributional Data and Species Distribution Models

Spatial overlap between the two sets of expert maps and
between each set of expert maps and the occurrence
records varied by species (Fig. 1a). Modeling the distri-
bution of a species based on its occurrence records and
environmental covariates yielded a probability surface
for the occurrence of that species in its specific study
area (Fig. 1b illustrates this process for one species).
Usually, these surfaces included very low probabilities
toward the edges of the study area, but exceptions oc-
curred when land and water boundaries truncated the
range or when occurrence records were clustered near
an artificial (geopolitical) truncation boundary. Species
distribution models, when evaluated by AUC score, per-
formed very well. Following the rule of thumb that
an AUC score of 0.8–0.9 implies a good model and
>0.9 implies an excellent model (Araújo et al. 2005),

>98% of species scored excellent and the rest scored
good.

Expert Scores and Predictors

When considering all species, expert score for Glass-
berg was substantially higher than for Scott (median =
0.61 vs. 0.41, respectively) (Fig. 1c). On a pairwise ba-
sis, Glassberg Expert Score exceeded Scott Expert Score
for 86% of species (Fig. 1d). Both coefficients decreased
with increasing expert range size (Supporting Informa-
tion). Several predictors related to attributes of map ge-
ometry and attributes of occurrence records, and but-
terfly traits were significant predictors of expert score
for both the Glassberg and Scott data sets (Fig. 2a,b &
Table 2). Attributes of the maps themselves constituted
the strongest predictors of expert score (adjusted R2 =
0.57 for Glassberg and 0.48 for Scott). Glassberg and
Scott maps were also similar in that predictors related to
occurrence records and to species ecology or life-history
traits explained much less variance in expert score than
attributes of map geometry and in that the variance
explained by these 2 groups of predictors added little to
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Figure 2. Predictors of expert score of species range maps of Glassberg and Scott. Score predicted separately by the
covariates related to map geometry, occurrence geometry, and life history. Groups of covariates were merged in all
combinations to predict (a) Glassberg expert scores and (b) Scott expert scores (circle size, relative measure of
variance explained by each group, adjusted R2 shown; circle overlap, measure of how much of the explanatory
power of a group of covariates is absorbed by another group when multiple groups are included in the model;
total, variance explained by all 3 groups collectively). Significant predictors related to map geometry for the (c-e)
Glassberg score and (f-h) Scott score.

models that already included attributes of map geometry
(Fig. 2a,b & Table 2). Hence, compared with models built
only from predictors of map geometry, models also in-
cluding predictors based on occurrence and ecology and

life history improved only slightly (adjusted R2: 0.57 vs.
0.65 for Glassberg and 0.48 vs. 0.51 for Scott). For both
sets of expert maps, the convex hull score and detailed
edge score were more strongly related to expert score

Conservation Biology
Volume 34, No. 5, 2020



1300 Expert Range Maps

0 1 2 3 4 5 6 7 8

0
1

2
3

4
5

6
7

8

Scott Range Area (million km2)

G
la

ss
be

rg
 R

an
ge

 A
re

a 
(m

ill
io

n 
km

2 )

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

60
70

mean

median

1st qu.

3rd qu.

Area Shared by Two Sets of Expert Opinion

F
re

qu
en

cy
 o

f S
pe

ci
es

total 0.44

Expert Agreement

life history
0.29

points geometry
0.3

(a) (b) (c)
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agreement predicted separately based on covariates related to occurrence geometry and life history (2 groups of
covariates merged to predict expert agreement; circle interpretation as in Fig 2). Bivariate plots of expert
agreement with each of the significant predictors related to points geometry and to ecology and life history are in
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than was the Polsby-Popper index (Fig. 2c-h) (definitions
in Table 1).

Results were broadly similar when we considered only
those species with nontruncated ranges (Supporting
Information). Standardized coefficients of significant pre-
dictors are in Supporting Information. The degree to
which expert score was predicted by each of the map
geometries under the simple linear regression framework
is summarized in Supporting Information.

Expert Agreement and Predictors

Across all species, Scott range size was consistently
greater than the corresponding Glassberg range size (for
87% of species) (Fig. 3a). Expert Agreement ranged be-
tween almost complete agreement to complete disagree-
ment (Fig. 3b). Across all species, the 2 expert maps
shared an average of 58% of the total range (median =
62%). Expert Agreement increased monotonically as a
function of range area for each of the sets of expert maps
(not shown). However, we excluded expert range area
and other map attributes as predictors of expert agree-
ment to avoid issues of circularity. Predictors related to
attributes of occurrences and ecology and life history
explained 30% and 29% of the variance in expert agree-
ment, respectively (Fig. 3c & Table 2); collectively, they
explained 44% of the variance. Scott and Glassberg ex-
pert maps agreed more for those species represented by
a larger number of occurrence records but agreed less
for species whose occurrences featured greater hetero-
geneity in spatial distribution (Supporting Information).

Point density exhibited a weak negative relationship with
expert agreement, and several ecological and life-history
traits were also weakly associated with expert agreement
(Supporting Information).

Restricting these same analyses to those species with
nontruncated ranges, we found 45% of variance among
maps explained by attributes of occurrences (vs. 30% for
all species), 58% explained by ecology and life-history
traits (vs. 29% for all species), and 64% explained by both
groups of predictors (vs. to 44% for all species) (Support-
ing Information).

Deviance in Expert Maps

Expert maps performed well in predicting unsuitable
landscape outside the expert-drawn map boundaries.
This was true for both Glassberg and Scott maps and
for the vast majority of species, as indicated by very
low deviance outside scores irrespective of expert score
(Fig. 4a,b). Consequently, the overall performance of the
expert maps was almost exclusively determined by the
deviance inside (i.e., from predictions concerning unsuit-
able areas inside the map).

Deviance inside was lower for Glassberg than for Scott
for 88% of species (Fig. 4c). This indicated that Glass-
berg more robustly predicted suitable sites than Scott.
In contrast, 80% of species had their deviance outside
higher for Glassberg than for Scott (Fig. 4d), indicating
the Glassberg maps had more omission errors than the
Scott maps. However, omission error contributed little
to overall model performance (Fig. 4a,b).
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Figure 4. Decomposing expert scores into deviance inside and outside expert maps for (a) Glassberg and (b) Scott.
The deviance of the expert map as a fraction of null deviance inside the map (scaled deviance inside expert map)
and outside of map (scaled deviance outside expert map) should be low for high expert scores. (c) Substantial
differences inside the maps and (d) trivial differences outside the maps between Glassberg and Scott prediction
deviance.

Discussion

Expert opinions, especially opinions that represent the
collective consensus of many experts, are indispensable
components of knowledge. Such opinions are especially
useful when more objective knowledge is incomplete,
as is true for species distributions. Different experts
draw maps with different intentions, which can result in
surprising deviations from each other in terms of range
boundaries. Only rarely are alternative expert maps
available for comparison. We contrasted alternative
expert maps for diverse species via comparisons to
SDMs that value reducing errors of commission as well as
omission.

Expert maps are often drawn specifically to reduce
omission errors and deal with commission errors by
having accompanying text describing where species are

most likely to be seen within the drawn range bound-
aries. Consequently, expert range maps make substantial
commission errors, often including large amounts of
uninhabited land within the range boundaries. For ex-
ample, species of birds, on average, occur in only 40% of
surveyed sites (Hurlbert & White 2005) or about half of
the 0.25° grid cells (Hurlbert & Jetz 2007). Our analyses
of expert maps echo these findings when we treated
the SDMs as the reference point (Fig. 4a,b). Our efforts
feature two advances. First, we addressed errors arising
from the inclusion of unsuitable sites in the expert maps
as well as errors arising from the exclusion of highly suit-
able sites from the expert map. Second, rather than eval-
uating the expert maps against presence-absence grids
based on occurrence records (Hurlbert & White 2005;
Hurlbert & Jetz 2007), we evaluated expert maps relative
to gridded probability surfaces derived from SDMs.
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This alternative may be especially advantageous when,
as here, highly efficient SDMs are available that can
detect habitat and likely occupied habitats in unsampled
locations.

For both the Scott and Glassberg expert map sets, we
observed substantial interspecific differences in agree-
ment with the SDMs (expert score, Fig. 1b). Thus, the
same expert method can yield very different predictions
relative to occurrence-based models when applied across
diverse species. Overall, the Glassberg maps provided
better matches to the SDM maps for 86% of species
(Fig. 1c), indicating a consistent consequence of the dif-
ferent approaches the 2 authors took when delineating
expert maps. For instance, Glassberg only included re-
gions in his range where the species was known to re-
produce even if it does not overwinter, whereas Scott in-
cluded areas that the species expanded to each year, even
if it did not reproduce. Thus, not surprisingly, the Glass-
berg range was smaller than the corresponding Scott
range for the vast majority of the species (Fig. 3a). This
suggests the higher fraction of false positives that occurs
in large expert ranges reduces the degree to which those
maps will agree with the predictions of SDMs.

Indeed, by contrasting the performance of expert
maps inside and outside expert-drawn map boundaries,
we found that for almost all species the predictive per-
formance of the expert maps was penalized by inclusion
of unsuitable sites within the map, rather than by exclu-
sion of suitable sites outside of the map (Fig. 4a,b). This
reflects the strategies used in drawing the expert maps:
experts routinely delineate the boundaries of a species’
range and then allow their accompanying species de-
scription to provide guidance on internal heterogeneity.
Overall, the two sets of expert maps differ greatly in the
extent to which they include false positives inside the
map boundaries. By including nonbreeding ranges, maps
that are overly generous in space may have reduced util-
ity (Fig. 1c) if they include unsuitable sites inside (Fig. 4c)
because they stretch to include more strays or vagrants
(Fig. 4d).

Expert maps vary in important ways. Among birds,
which have some of the most complete distributional
information (Hurlbert & Jetz 2007), expert maps are
a reasonable approximation of species’ range at 100–
200 km spatial scale (Hurlbert & White 2005; Hurlbert
& Jetz 2007; Merow et al. 2017). For many other
taxonomic groups, whose distributions are less well
known than birds, the spatial accuracy of expert
maps is largely unknown. Even for birds, expert maps
tend to include false presences at coarse resolutions
(Hurlbert & Jetz 2007), limiting the utility of the
expert maps for understanding ecological processes,
conservation planning, disease risk assessment, and
similar applications unless the accompanying text is also
taken into account. However, when used for analytical
purposes, usually only the range map is considered. The

framework we developed offers a way to explore the
congruence between expert maps and SDMs, which
are very different approaches for understanding species
ranges. An emphasis in minimizing omission errors more
strongly than commission errors shifts an SDM output
from detailed edge and heterogeneous and disjointed
patches of highly suitable areas to a smooth blob-like
area commonly reported in expert maps.

One caveat of using a probability surface to evaluate
expert credibility is that SDM outputs cannot possibly
account for all dispersal barriers, biotic interactions
(Soberón 2007), and environmental dependencies.
These omissions could result in overestimation of species
distribution, whereas experts would be expected to
know about such geographical and biological constraints
(Domisch et al. 2016), thereby, yielding more realistic
species range maps. If such omissions were important,
they would drive deviance outside scores upward.
However, we found near-0 deviance outside (Fig. 4a,b).
In contrast, SDMs may not capture range internal
heterogeneity due to spatial biases in available data
(Kramer-Schadt et al. 2013; Yackulic et al. 2013). This
important problem can be at least partially addressed if
species occurrences are well sampled across multiple
environmental gradients. Such sampling reduces bias
along the variables used to predict occurrence patterns,
even if the sampling is geographically biased. A compre-
hensive review of the best practices in SDM is beyond
the scope of this article (see contemporary literature,
including Elith & Leathwick 2009 and Araújo et al. 2019).

Lessons for the use of Expert Maps

Organisms typically tolerate environmental conditions
across a continuous range, with upper and lower critical
limits on either side of an optimum (Miller & Stillman
2012). However, continuity in environmental ranges
need not map onto continuity in geographic space.
Consequently, mapped ranges may feature porosities
reflecting unsuitable localities within a larger suitable
region (Hurlbert & White 2005); tortuous range edges
that result in range concavities and increased detailed
edge measures; and disjunct suitable areas. Here, agree-
ment between expert maps and SDMs decreased with in-
creases in 3 expert map traits: convex hull score, detailed
edge, and Polsby-Popper score (Fig. 2d-i) (definitions in
Table 1). Collectively, these 3 measures characterize the
geometric shape of the maps: were the maps elongate
versus compact, convex or featuring concavities, and
drawn with much or little boundary detail. Once
these differences in range geometry were accounted
for, life-history and ecological traits explained almost
no further variability, which was a surprising result
(Fig. 2).

Because expert maps are generally presented with
accompanying information about habitat, elevational,
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or other physical environmental preferences, actual
internal heterogeneity is routinely absent from the maps.
Increased accessibility to relevant environmental layers
may allow future expert maps to be combined within
geographic information systems to minimize both omis-
sion and commission errors. Effectively this would lead
to expert maps that feature porosities or are split into
separate spatial units to eliminate unsuitable landscape.
None of the maps we used featured porosities, nor
did they allow a reliable counting of separate spatial
units.

Conservation practitioners are far more likely to use
existing expert maps than to develop new ones. As
we show, not all expert maps are drawn based on
the same criteria; thus, expert maps are not always
comparable (either for different species by the same
group of experts or for the same species by different
groups of experts). Practitioners must be especially
careful to understand how expert maps were developed
and what assumptions were presented by the authors.
We found expert maps with small convex hull scores
and small area to perimeter ratios were more likely
to match predictions from species distribution models
(Fig. 2). It remains to be seen if this is more generally
true.

In conclusion, range maps are abstractions of experts’
belief about species distributions. Those abstractions
depend on spatial scale and thus may introduce errors
especially when they are digitized and stacked for uses
beyond which they were intended such as estimating
local species richness (Hurlbert & Jetz 2007). However,
expert range maps are widely used in macroecological
and conservation analyses (e.g., Shriner et al. 2006)
precisely because they are so readily available. It is clear,
however, that expert maps should be used with caution
and with clear attention to the assumptions originally
used to draw them. In recent analyses, expert range
maps were used in 69% of 85 studies of species richness
(Hawkins et al. 2003), even though they predicted
roughly as many false occupancies as true occupancies
(Hurlbert & White 2005; Hurlbert & Jetz 2007) and
overestimated the spatial pattern of species richness
(Hurlbert & Jetz 2007). Our analyses suggest that expert
range maps will provide the best matches to SDMs when
they are drawn to reduce errors of commission and when
they feature heightened values of concavity and detailed
edge. When available, we predict that other map charac-
teristics, such as porosity and number of spatially isolated
units, will also contribute to the agreement between
SDMs and expert maps. Likewise, SDMs could leverage
the value of expert maps (Jetz et al. 2012) if the maps are
used to limit the boundaries of potential space (Fig. 1a),
thus, helping to reduce SDM commission errors from the
outset.
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